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A B S T R A C T

Understanding the impacts of local and regional landscape characteristics on spatial distributions of

wildlife species is vital for achieving ecological and economic sustainability of forested landscapes. This

understanding is important because wildlife species such as white-tailed deer (Odocoileus virginianus)

have the potential to affect forest dynamics differently across space. Here, we quantify the effects of local

and regional landscape characteristics on the spatial distribution of white-tailed deer, produce maps of

estimated deer density using these quantified relationships, provide measures of uncertainty for these

maps to aid interpretation, and show how this information can be used to guide co-management of deer

and forests. Specifically, we use ordinary least squares and Bayesian regression methods to model the

spatial distribution of white-tailed deer in northern hardwood stands during the winter in the managed

hardwood-conifer forests of the central Upper Peninsula of Michigan, USA. Our results show that deer

density is higher nearer lowland conifer stands and in areas where northern hardwood trees have small

mean diameter-at-breast-height. Other factors related with deer density include mean northern

hardwood basal area (negative relationship), proportion of lowland conifer forest cover (positive

relationship), and mean daily snow depth (negative relationship). The modeling methods we present

provide a means to identify locations in forest landscapes where wildlife and forest managers may most

effectively co-ordinate their actions.

� 2009 Elsevier B.V. All rights reserved.
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1. Introduction

Spatially explicit wildlife population density models, including
those that account for the spatial arrangement of local habitat, are
essential for forest management (Turner et al., 1995). For example,
the spatial arrangement of local forest stands with different
composition and size-density characteristics (hereafter referred to
as forest structure) may affect ungulate herbivore population
density and lead to spatial variation in forest vegetation
regeneration success. Landscape pattern has also been shown to
influence wildlife species’ habitat selection across large regional
extents (Kie et al., 2002; Boyce et al., 2003). Forest characteristics
and other environmental variables at these larger regional scales
may combine with local characteristics to add further spatial
variation to herbivore population density and vegetation regener-
ation success. Understanding wildlife distributions and their
* Corresponding author at: Department of Fisheries and Wildlife, Michigan State

University, 1405 S Harrison Rd, 115 Manly Miles Building, East Lansing, MI 48823,

USA.

E-mail addresses: jmil@msu.edu, jamesdamillington@gmail.com

(James D.A. Millington).

0378-1127/$ – see front matter � 2009 Elsevier B.V. All rights reserved.

doi:10.1016/j.foreco.2009.12.020
relationships to local and regional landscape patterns can aid
forest managers in developing harvest strategies that ensure the
ecological and economic sustainability of the forests they are
entrusted with.

Forest management approaches that mimic natural distur-
bances have been proposed as a means to achieve this
sustainability by maintaining both biological diversity and timber
production (e.g., Mitchell et al., 2002). In many managed forests,
including the northern hardwood forests of North America, wind
disturbance events and tree senescence are predominant natural
disturbances that create gaps in the forest canopy. Selection
harvesting is a management approach intended to mimic these
natural disturbance events by removing single to small groups of
trees, creating gaps and maintaining an uneven tree-age distribu-
tion in forest stands (Arbogast, 1957; Tubbs, 1977; Tyrrell and
Crow, 1994). However, the success of selection harvesting depends
on the establishment and survival of desirable shade-tolerant
species (such as sugar maple) in the understory at sufficient
density to replace overstory trees that are removed by the periodic
harvests (Oliver and Larson, 1996). The presence of herbivores that
browse these tree species can stunt growth or kill seedlings and
saplings, potentially leading to a regeneration failure and
threatening forest sustainability (this disturbance pressure is
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likely to be equally important in gaps created by natural
disturbances).

White-tailed deer (Odocoileus virginianus) is one herbivore that
has long been recognized as having the potential to cause
regeneration failure and greatly affect vegetation dynamics, stand
structure and ecological function in many forest types of North
America (Stromayer and Warren, 1997; Waller and Alverson,
1997; Cote et al., 2004). In hardwood-conifer forests in particular,
white-tailed deer have been found to drive changes in understory
structure and species composition (Augustine and Frelich, 1998;
Holmes et al., 2008), cause species composition change of
overstory trees (Anderson and Loucks, 1979; Tilghman, 1989;
Long et al., 2007) and reduce stand timber value by slowing the
recruitment of saplings to canopy positions (Marquis, 1981). These
impacts on stand species composition and structure are most
severe where deer densities are greatest (Rooney and Waller,
2003). Consequently, understanding the spatial distribution of
deer is vital in order to manage for deer browse impacts in forest
stands. However, the factors that influence deer density are poorly
understood relative to the knowledge about the effects of deer on
vegetation (Russell et al., 2001). The ability to estimate deer
density from standard forest stand inventory data, forest cover-
type data, and other measureable environmental variables at
regional scales would be of great benefit to forest managers (e.g.,
Weisberg and Bugmann, 2003).

Landscape forest cover pattern is likely to be an important
determinant of deer density during the winter in mixed hardwood-
conifer forests. During winter in these forests, white-tailed deer
generally shelter in mature conifer swamps, venturing out to
browse in nearby stands, including northern hardwood stands
(Verme, 1965; Euler and Thurston, 1980; St-Louis et al., 2000). This
behavior is a response to the trade-off between conserving heat
and energy in the shelter beneath the closed canopies of the
(evergreen) conifer stands versus negotiating deeper snow and
colder temperatures in the more open (deciduous) mixed
hardwood stands to find adequate forage (Verme, 1968; Armstrong
et al., 1983; Schmitz, 1991). Thus, winter habitat for white-tailed
deer in hardwood-conifer forests must provide both thermal cover
and food, and must do so in close enough proximity for the deer to
travel between the two forest types diurnally. In combination with
these patterns of forest cover, regional variations in environmental
factors associated with winter severity (such as snow depth and
low temperatures) are also likely to influence deer activity. For
example, Morrison et al. (2003) found that deer movement in
forest stands varies with snow depth and the spatial arrangement
of shelter in neighboring stands.

Previous studies have considered the spatial distribution of deer
at the landscape scale, but these have mainly concerned seasonal
migration and home ranges (e.g., Verme, 1973; Tierson et al., 1985;
Van Deelen et al., 1998; Brinkman et al., 2005). For example, Kie et
al. (2002) examined the relationship of landscape metrics
measured over different spatial extents with home range sizes
of female mule deer. To the best of our knowledge only one study
has examined the influence of local stand-level characteristics on
winter deer density. Dumont et al. (1998) found that over a 25 km2

area forest type, proportion of conifer cover, food availability and
mean deciduous tree diameter-at-breast-height were the most
important predictors of deer density. We are unaware of any
previous study that uses estimates of deer density in individual
stands to quantify deer-habitat relationships across a large
managed forest landscape. Here, we use ordinary least squares
and Bayesian regression methods to investigate how local forest
structure, with regional-scale variation in snow depth and
landscape pattern, can explain the density of white-tailed deer
in northern hardwood stands during winter in the managed forests
of the central Upper Peninsula of Michigan, USA. Using the
quantitative relationships found, we produce spatial estimates of
deer density, with uncertainty estimates, and demonstrate how
this information can be used to guide co-management of deer and
forest regeneration.

2. Methods

2.1. Study area

The study area comprises approximately 4000 km2 in the Upper
Peninsula (U.P.) of Michigan (Fig. 1a). This area was chosen to focus
on a predominantly forested region with a minimum of intensive
human land uses such as agriculture, urban, suburban, or other
settlements. The predominant forest cover types in the study area
are lowland coniferous, northern hardwood, aspen and mixed
upland. In the central, eastern and southern parts of our study area
(Ecoregion Section VIII, Albert, 1995) these forest covers form a
relatively regular mosaic of upland hardwood and lowland conifer
stands, juxtaposed across the rolling topography of the Menomi-
nee drumlin field. Larger patches of hardwood forest cover are
found in the north west of the study area (Ecoregion Section IX).
Predominant tree species in the study area are Thuja occidentalis

(northern white cedar) in lowland forests, Acer saccharum (sugar
maple) in upland forests, and Aspen forest cover is dominated by
Populus tremuloides (trembling aspen). These forest covers provide
habitat for numerous wildlife species and guilds including white-
tailed deer and neotropical migrant songbirds (see Laurent et al.,
2005 for more details on songbirds and other tree species present).

The primary land use in the study area is forest management for
timber products. Northern hardwood stands are managed for a
wide-range of wood products including high-value veneer logs,
saw logs, and pulpwood. Uneven-aged single-tree selection
silviculture dominates northern hardwood management in the
study area. Harvest specifications vary with ownership and/or
management goals, but stands are typically entered approximately
every 10–20 years and 1/4 to 1/3 of the basal area removed to leave
16–18 m2/ha (70–80 ft2/acre) residual basal area (e.g., Schwartz et
al., 2005). Land ownership in the study area is divided between
State (42%), non-industrial private (38%), and private industrial
(20%) owners.

2.2. Winter white-tailed deer density data

We surveyed white-tailed deer fecal pellet density to derive an
estimate of the number of deer-hours spent in a particular location
during the previous winter. We performed all surveys immediately
after snow melt between 28th April and 18th May 2008 to
represent winter deer density for the time period beginning with
leaf-off of the previous autumn (assumed to be November 1st), and
ending with counting date. The use of deer fecal pellet counts to
estimate deer density has been criticized (e.g., Fuller, 1991).
However, experiments have shown that the simple relationship
between pellet density and actual deer density is a reasonable
approximation (Hill, 2001) and the method has been used since the
1950s by the Michigan Department of Natural Resources (MDNR).
In this paper we calculate deer density from our pellet counts by
assuming deer produce 13.4 pellet groups/day (consistent with the
approach of MDNR). Although this method does not provide a
precise estimate of absolute deer densities that can be directly
compared with other landscapes, it does provide an internally
consistent means to assess spatial variation in deer density across
our study area.

At each of 51 study sites we positioned and surveyed ten
transects arranged in a ‘‘bow tie’’ configuration established within
a 155 m radius of the site center (7.5 ha, Fig. 2). The mean of pellet-
group counts for all ten transects was used to calculate deer



Fig. 1. Michigan Upper Peninsula study area. (a) 51 sites, shown by black dots, were selected from across the study area which is characterized by a mosaic of hardwood and

conifer stands. (b) Aerial photography of the section of the study area selected for the production of spatial deer density estimates. (c) Stand data (cover type, stand DBH and

stand BA) for the entire study area were available at the spatial precision shown (note presence of areas with no data). Note power lines running north–south in west of study

area section in (b) are correspondingly represented as open area in (c).

Fig. 2. Plot sampling design for deer-pellet counts. Ten 50 m deer-pellet count

transects (straight black lines) were organized in a ‘bow-tie’ shape around each site

center in northern hardwood stands. Transects were 4 m wide and double-counted.

The circle shown has radius 200 m corresponding with the LOIs we examined.

Colors representing different forest cover types are as for legend in Fig. 1.
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density (deer/km2) at each site. Study plots were centered in
northern hardwood stands. Locations of study sites were selected
using three different criteria based on time since harvest and
locations of previous data collection: 16 sites were northern
hardwood stands that underwent selection harvest during 2005–
2007; 13 sites were stands that underwent selection harvest
during 1994–2003; and 22 sites were used previously by Laurent et
al. (2005, description of location selection described therein). Each
of the ten transects in the plots had dimensions of 50 m � 4 m
(0.02 ha). Pellets within transect areas were counted indepen-
dently by each of two field crew members walking in opposite
directions along transects.

2.3. Local forest structure data

Our forest structure data are from the MDNR Forest Operations
Inventory (OI), private industrial forest stand records, and timber
stand cruises of private industrial and non-industrial forest stands
undertaken during summer 2008 and early spring 2009. The OI
classifies stands based on vegetation as well as management
objectives and contains information such as stand type (e.g., aspen,
northern hardwood, mixed swamp conifer, etc.), stand basal area
(BA), and mean stand diameter-at-breast-height (DBH). MDNR
update OI data for individual stands on a 10-year rotation, so we
adjusted the OI to account for changes in BA and DBH since last
data collection for each northern hardwood stand. These stands
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were projected to their 2008 state by assuming increments in
annual BA (between 0.40 and 0.48 m2/ha/year dependent on
residual stand basal area) and DBH (between 0.32 and 0.50 cm/
year, Crow et al., 1981) from the year of data collection to the year
of pellet data collection. There are no stands in our data that were
harvested since the last year of DNR OI data collection. Private
industrial inventories contain stand type only and no tree data.
Therefore we measured stand BA (10 BAF prism) and mean stand
DBH (diameter tape) on private industrial and non-industrial
forest land in the vicinity of our deer density estimates (see below
for description of the area measured). Stand characteristics data
were linked in a GIS (ESRI, 2006) with stand boundary maps for
MDNR and industrial private lands (e.g., Fig. 1c). Stand boundaries
for private non-industrial land were digitized using aerial
photography with field notes.

We hypothesize, given the literature cited previously, that the
density of deer at a location in the landscape will be influenced
by stand size-density characteristics and forest cover composi-
tion of surrounding areas. For each deer density estimate, we
calculate stand-level characteristics for surrounding Landscapes
of Influence (LOIs) of radius 200 m (12.5 ha, Fig. 2). We term
forest characteristics that are measured only within these LOIs as
‘local landscape variables’. In the central Michigan U.P., deer
winter home ranges have been found to vary between 730 and
1859 ha (Van Deelen et al., 1998). Here we consider smaller areas
because we are concerned with local factors affecting winter deer
use and not seasonal range dynamics, and because they minimize
data requirements for future management applications of our
results.

For each LOI we calculate area-weighted mean northern
hardwood stand DBH (termed Hardwood_DBH in the remainder
of the paper) and area-weighted mean northern hardwood stand
BA (termed Hardwood_BA). We also calculate the range of DBH
(termed Hardwood_DBH_Range) and BA (termed Hardwood_-

BA_Range) for stands in each LOI containing more than one
northern hardwood stand. We examine these variables to
investigate the potential effects of local timber management
on winter deer density. We calculate the spatial composition
(proportion) of each LOI in the three forest cover classes that
dominate the study area: northern hardwoods (termed Hard-

wood_Proportion), lowland conifers (termed LC_Proportion), and
aspen (termed Aspen_Proportion). We define lowland conifer
stands as those dominated by northern white cedar, black spruce
and mixed swamp conifers (from the OI classification). We also
calculate the total number of stands with some area within each
LOI (termed Number_of_Stands). We examine these measures of
local landscape composition as they reflect the literature on the
requirements for winter deer habitat outlined above (i.e.,
deciduous forest cover for food and lowland conifer cover for
shelter).

2.4. Regional landscape data

To assess the importance of landscape variation at scales larger
than the LOIs we examine, we consider locations of lowland conifer
stands, snow depth and ecoregion. We term these variables,
regional landscape variables, to contrast our, local, landscape
variables. We use our stand-level GIS data to calculate distance to
the nearest lowland conifer stand for each deer density estimate
(termed Distance_LC). This is a measure of the proximity of winter
deer shelter (potentially outside the LOIs we consider). We use
data from the Snow Data Assimilation System (SNODAS) produced
by National Snow and Ice Data Center (NOHRSC, 2004) to account
for potential effects of snow depth on deer density. For more
details about the specifics of the SNODAS snow mass and energy
balance model and the assumptions it makes, see Barrett (2003)
and references therein. We use the daily snow depth variable from
SNODAS to calculate mean daily snow depth (mm) for November
2007 to April 2008 (termed Snow_Depth). Snow depth is believed to
be a factor influencing winter deer movement at both local and
regional scales (Pauley et al., 1993; Brinkman et al., 2005). Given
the broad variation in land cover pattern across our study area
described above, we examine whether ecoregion subsections
associated with regional vegetation patterns (Albert, 1995, termed
Ecoregion) are an important regional driver of winter deer density.
Finally, we do not consider regional factors related to deer hunting,
as most land in our study area is publicly open to hunting and
subject to State game laws. Therefore, we believe there is little
potential for these factors to have sufficient variation to drive
regional deer distribution.

2.5. Linear regression and model inference

We use ordinary least squares (OLS) regression to examine the
effects of our independent variables on deer density. To meet
normality assumptions of linear regression, we log10 transform
deer density estimates for use in these models. Other variables are
normally distributed. We do not include a spatial autocorrelation
component in our models as Moran’s I (globally standardized)
indicates no significant autocorrelation in deer density data for lag
distances of �10 km.

With n = 51 for our data set we must minimize the number of
variables in multiple linear regression models to prevent the
possibility of over-fitting. To do this, we first examine univariate
models and select most useful predictors from these models for
examination in multi-variate models. To further reduce the
number of predictors, and to aid inference regarding the most
important independent variables, we use Bayesian Model
Averaging (BMA). This approach is increasingly being used in
ecological species distribution modeling (e.g., Wintle et al., 2003;
Thomson et al., 2007), and provides a method to account for
model uncertainty by calculating (approximate) posterior
probabilities for each possible model that could be constructed
from a suite of independent variables (Hoeting et al., 1999).
Bayesian model averaging also provides a posterior probability
for the inclusion of each variable in the best candidate model.
This probability can be used to produce weighted mean values
for all variable parameter estimates (i.e., mean parameter
estimates are weighted by the probability that they occur in
the best model), each with its own confidence interval. We use
the package ‘BMA’ in R (Raftery et al., 2009) to perform these
analyses.

We evaluate OLS model performance with both adjusted R2 and
t, the Kendall rank correlation coefficient, which allows us to
evaluate if our deer density data are best modeled as absolute (R2)
or relative (t) deer density. Furthermore, if P is the probability that
observed and modeled deer densities for a randomly chosen site
are ranked at the same position in the entire sample of sites, then
t = 2P � 1. We present both t and P in our results. For OLS models,
we also consider model statistical significance and variable
parameter estimates as measures of model performance and
variable importance, respectively. Because our data set is not large,
we do not split it into ‘calibration’ and ‘testing’ data sets. Instead,
we test our OLS models using fivefold cross-validation, a case of k-
fold cross-validation (Hastie et al., 2001). By replicating the cross-
validation multiple times we produce central tendency and
variance of error estimates (i.e., R2 and t). We use k = 5 in our
cross-validation to compromise between reducing variance of our
error estimates and maximizing the use of our sample data for
model testing. All OLS methods described above were performed in
R (R Development Core Team, 2009), using ‘stats’, ‘bootstrap’, and
‘spdep’ packages.



Table 1
Univariate ordinary least squares regression models of (log) deer density for three

LOI data sets. Variables statistically significant at P<0.05 are shown in bold and at

P<0.10 in italics. Models use data with n = 51 except range variables which use data

for LOIs with Number_of_Stands>1 (resulting in n = 20).

b P R2 ta

Regional

Distance_LC (km) �0.726 0.007 0.14 0.21
Snow_Depth (mm) �0.002 0.079 0.06 0.11

Ecoregion �0.015 0.726 0.00 0.07

LOI composition

Number_of_Stands �0.002 0.943 0.00 �0.08

Aspen_Proportion �0.280 0.347 0.02 0.06

Hardwood_Proportion �0.026 0.911 0.00 0.09

LC_Proportion 1.130 0.030 0.09 0.17

Hardwood stands structure

Hardwood_DBH (cm) �0.024 0.021 0.10 0.22
Hardwood_BA (m2/ha) �0.024 0.081 0.06 0.16

Hardwood_DBH_Range 0.018 0.182 0.10 0.22

Hardwood_BA_Range �0.009 0.678 0.01 0.10

a Kendall rank correlation coefficient.
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2.6. Spatial estimates of deer density

We produce spatial estimates of deer density for northern
hardwood stands in a section (�20 km2) of our study area (Fig. 1b
and c) by applying parameter estimates from the ‘best’ and
averaged Bayesian linear regression models (from BMA) to raster
maps (30 m resolution) of the independent variables. Confidence
intervals for each variable parameter estimate can be used to
produce a model ensemble that provides both a mean estimate of
deer density and a standard deviation of that estimate for each map
pixel (Araújo and New, 2007). These standard deviations can be
used as an indicator of uncertainty in the pixel estimate (larger
standard deviation of predicted values across model realizations
implies greater uncertainty). The model ensemble is composed of
multiple realizations of the Bayesian linear regression models,
with parameter values for each realization sampled from the
posterior probability distribution for each independent variable.
We use 1000 realizations for each model ensemble, performing
analyses with a bespoke computer program. We examine a section
of our study area because our data are spatially incomplete for the
entire study area.

3. Results

For univariate regressions, Distance_LC has a significant
(P < 0.05) negative relationship with deer density and explains
more variance than any other variable (Table 1). The relationship
indicates that we can expect an average of approximately 19 deer/
km2 at locations where the nearest lowland conifer stand is 100 m
distant, and approximately 6 deer/km2 at 800 m. Relationships
between deer density and LC_Proportion (positive relationship) and
Hardwood_DBH (negative relationship) were also significant at
P < 0.05, and Snow_Depth (negative relationship) and Hardwood_BA

(negative relationship) were nearly significant (P = 0.079 and
P = 0.081, respectively) (Fig. 3). All other single variable relations
had P > 0.10.

To prevent over-fitting we use the five best univariate
predictors (all P < 0.10) in a ‘full’ OLS linear regression model
(Table 2). This ‘full’ OLS model is statistically significant (P = 0.011)
and is able to predict 28% of the variance in deer density estimates
(R2). For this same model, using t as a measure of model
performance indicates a 69% chance that observed and modeled
Fig. 3. Univariate relationships between (log) deer density and independent variables

Confidence bands (95%) are shown for relationships with P < 0.05.
deer density for a site are ranked at the same position in the entire
sample of sites. Results for fivefold cross-validation indicate the
model performs less well when predicting observations not used in
model calibration, but also that performance decreases less for the
‘best’ model versus the ‘full’ model (Table 2).

Results from BMA analyses indicate that from our set of five
variables, those with highest probability of being in the best
candidate model are Distance_LC (0.59) and Hardwood_DBH

(0.57) (Fig. 4). These variables are present in the most probable
model alone, and with Hardwood_BA are the only variables in
the five most probable models (with cumulative probability of
0.41). LC_Proportion does not appear in any of the five most
probable models, but has a greater probability than Hard-

wood_BA of being in the best candidate model. This is because
LC_Proportion has a greater probability of being present in a
model when Distance_LC is absent. An OLS regression of the best
candidate model from BMA has P = 0.004 (Table 2) and a
probability of 0.66 that observed and modeled deer density for a
site will be ranked at the same position in a sample of sites.

Spatial patterns of deer density estimated by model ensembles
are similar between ‘best’ and averaged Bayesian regression
with P < 0.10. Ordinary least squares regression lines are shown for all variables.



Table 2
‘Full’ and ‘Best’ ordinary least squares linear regression models of (log) deer density.

Variables statistically significant at P<0.05 are shown in bold and at P<0.10 in

italics. Error estimates for cross-validation results are 95% confidence intervals

calculated from mean and variance of 100 repetitions. Models use data with n = 51.

‘Full’ model ‘Best’ model

b P b P

Intercept 2.254 <0.001 1.815 <0.001
Distance_LC (km) �0.326 0.276 �0.624 0.019
Hardwood_DBH (cm) �0.019 0.063 �0.019 0.056

Hardwood_BA (m2/ha) �0.017 0.216 – –

LC_Proportion 0.673 0.216 – –

Snow_Depth (mm) �0.001 0.312 – –

Model P-value 0.011 0.004

Model R2 0.28 0.20

Model ta (P)b 0.38 (0.69) 0.31 (0.66)

Fivefold cross-validation, R2 0.11 (�0.005) 0.12 (�0.004)

Fivefold cross-validation, t 0.23 (�0.005) 0.23 (�0.004)

a Kendall rank correlation coefficient.
b Values in brackets (P) for t are the probability that observed and modeled deer

densities for the same site are ranked at the same position in the entire sample of

sites (calculated as [1 +t]/2).

Table 3
‘Best’ and averaged Bayesian linear regression models of (log) deer density found by

Bayesian model averaging. A dash (–) indicates the variable was not present in the

model.

‘Best’ model Averaged model

Mean b Std. Dev. Mean b Std. Dev.

Intercept 1.817 0.252 1.760 0.421

Distance_LC (km) �0.627 0.264 �0.354 0.365

Hardwood_DBH (cm) �0.020 0.010 �0.012 0.013

Hardwood_BA (m2/ha) – – �0.007 0.012

LC_Proportion – – 0.316 0.532

Snow_Depth (mm) – – �0.000 0.001
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models (Fig. 5, models are presented in Table 3). Maximum deer
density (47 and 50 deer/km2 for ‘best’ and averaged models,
respectively) and minimum deer density (9 and 12 deer/km2 for
‘best’ and averaged models, respectively) are also similar. Lower
deer densities away from the edges of northern hardwood stands
are observed for both models (Fig. 5a and b), as expected given the
important negative relationship between Distance_LC and deer
density (Table 1, Figs. 3 and 4). However, greatest pixel estimate
standard deviations (i.e., uncertainty) are also generally greater
away from the edges of northern hardwood stands, reflecting the
influence of the combination of high Distance_LC values with
uncertainty in the parameter estimate (Fig. 5c and d, Table 3).
Uncertainty in pixel deer density estimates is low at the edge of
many northern hardwood stands because uncertainty in the
intercept value of the regression models is low (i.e., relatively low
standard deviation compared to the estimate mean, Table 3).

Greatest differences in deer density estimates between ‘best’
and averaged model ensemble maps are in areas with low
Distance_LC and high LC_Proportion, with greater densities
generally predicted by the averaged model (e.g., area highlighted
by circles in Fig. 5a and b). Uncertainty is greater in all areas for the
averaged model compared with the ‘best’ model (Fig. 5c and d).
Mean pixel standard deviations are 2.2 and 4.2 deer/km2 for ‘best’
and averaged model uncertainty maps, respectively. Greater
uncertainty in deer density estimates for the averaged model is
Fig. 4. Bayesian model averaging. Results for the five models with highest posterior

probability of being the best candidate model in each model set are shown

(probability for each model shown at top). Dark blocks indicate the corresponding

variable (row) is included in a given model. Posterior probabilities of variables being

included in the best model are shown to the right of the blocks.
a result of the addition of variables with large standard deviations
relative to their mean estimate values (Hardwood_BA, LC_Propor-

tion and Snow_Depth, Table 3).

4. Discussion

4.1. Determinants of winter deer density

Our results highlight the importance of lowland conifer cover
for winter deer habitat and show that it is an important driver of
deer density in northern hardwood stands of mixed hardwood-
conifer forests. The negative relationship of deer density with
Distance_LC (Table 1, Fig. 3) implies deer densities are greater
nearer lowland conifer stands (which provide thermal cover) and
the positive relationship with LC_Proportion (Table 1, Fig. 3)
indicates more deer in areas with greater lowland conifer forest
cover (again providing thermal cover). Our results also suggest that
local northern hardwood stand structure (mainly Hardwood_DBH)
is important for deer density. The importance of Hardwood_DBH

(Table 1, Figs. 3 and 4) is less easy to interpret than lowland conifer
variables. Hardwood_DBH was unassociated with particular tree
species relative abundance or tree diversity (P > 0.19) or with time
since last partial harvest (P = 0.125). Although we expected aspects
of forest management to be influential, we are currently unable to
provide a convincing reason for the importance of Hardwood_DBH

on deer density. However, our results for Hardwood_DBH are
similar to those from the only other known study of this type
(Dumont et al., 1998), which found local deciduous forest DBH was
an important driver of winter white-tailed deer density at a study
site in eastern Quebec, Canada.

We examined the influence of regional variables (e.g., mean
daily snow depth and Albert’s ecoregion subsection boundaries)
because deer density in northern hardwood stands over our
4000 km2 study area could be modified by factors that vary at
this scale. Although snow depth varied across our study area, the
limited influence of Snow_Depth on deer density may be
attributable to the relatively shallow snow depths in our study
area. Compared with the depth at which snow begins to
significantly impair deer movement and increase energy costs
(around 400 mm, e.g., Parker et al., 1984; Pauley et al., 1993), our
mean daily snow depths (150–370 mm with a mean of 250 mm)
indicate that snow is not such a hindrance to deer movement in
our study area as it might be in others. Shi et al. (2006) found
snow depth to be very important for driving regional variation in
deer distribution for a study area larger than ours in Michigan’s
western U.P. (e.g., on the Keweenaw Peninsula where winter
snowfall is greater). They found snow depth was less important
in the vicinity of our study area. We suggest that our methods
may be applicable to other regions with similar forests (e.g.,
much of the mixed hardwood-conifer forests of the Great Lakes
region), although the importance of variables (such as snow
depth) may vary.



Fig. 5. Spatial estimates of deer density from regression model ensembles. (a) Mean of ensemble estimates from best Bayesian regression model, (b) mean of ensemble

estimates from averaged Bayesian regression model, (c) standard deviation of ensemble estimates from best Bayesian regression model, and (d) standard deviation of

ensemble estimates from averaged Bayesian regression model (regression model details in Table 3). Each model ensemble is composed of 1000 regressions using parameter

estimates sampled from ensemble posterior probability distributions. Original forest cover map is shown in Fig. 1c. Red circles highlight an example area of a relatively great

difference between deer density model estimates, due to high LC_Proportion (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of the article).
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Interestingly, Shi et al. (2006) also found that for our study area,
patch area of white cedar canopy cover >70% is more important
than snow for determining regional deer density. We found that
Distance_LC is likely more important than LC_Proportion for
explaining deer density (Table 1, Fig. 4) but that the two variables
are somewhat correlated (Pearson’s correlation
coefficient = �0.43). We suggest the results of Shi et al. (2006)
might be due to colinearity between patch area of cedar cover and
distances to those patches within pixels of the coarse grain data
they used (23 km2). Although our fine-scale stand-level data have
restricted the number of data points for analysis, they allow us to
refine understanding about the mechanisms of spatial relation-
ships—in this case that deer density is influenced more by
proximity to the thermal cover of lowland conifer stands than
the local abundance of lowland conifer.

We included Ecoregion in our analyses as a proxy for regional-
scale variation in land cover pattern between southeast and
northwest of our study area. Although Ecoregion was not an
important predictor of our deer density estimates, parameter
estimates from Geographically Weighted Regression analyses (not
presented, Fotheringham et al., 2002) suggest greater influence of
Distance_LC than Hardwood_DBH and Hardwood_BA in the north and
west of the study, and vice versa in the south and east. However,
these spatial patterns are not significantly different from a random
distribution (Hope’s 1968 Monte Carlo significance test at P < 0.05),
and the absence of spatial pattern in residuals from our OLS
regression models suggests that any regional differences in forest
cover in our study area are not important for the models we have
investigated above. This implies that our ‘global’ models (i.e., for the
full extent of our study area, Tables 2 and 3) are appropriate, and that
potential differences in the importance of variables across our study
area are due to variation in the distribution of independent variables
rather than in how those variables influence deer density.
4.2. Management implications

The ability to predict white-tailed deer density in northern
hardwood stands would be valuable to managers for a number of
reasons, including efforts to achieve desirable levels of both tree
regeneration and deer in a managed forested landscape. Manage-
ment activities aimed at mitigating the impact of white-tailed deer
on ecological processes should be targeted at areas with relatively
high deer density, as magnitude of deer impact on ecological
processes such as tree regeneration is likely to be greatest in these
areas (Rooney and Waller, 2003). Information about the types of
variables that we found to be important in predicting variation in
deer density in northern hardwood stands (cover type, size/
density, distance) is usually available to land managers in
inventory and GIS databases. Thus, using readily accessible data,
land managers could estimate relative winter deer density across
their management areas, as shown in our spatial estimates (e.g.,
Fig. 5). We suggest maps such as these are best used as indicators of
relative deer density across a landscape, given the many assump-
tions needed to use counts of deer fecal pellet groups as a proxy for
deer density (for example, our ‘best’ regression model explains 20%
of variance in deer density, but has a 66% chance of correctly
ranking a site, Table 2).

By adopting an ensemble modeling approach, in which multiple
realizations of a regression model are generated by sampling from
the probability distributions provided by the Bayesian linear
regression, we are able to produce ‘uncertainty’ maps to
accompany our deer density estimates (Fig. 5c and d). Measures
of uncertainty in deer density estimates produced by Bayesian
ensemble models are equally as important as the deer density
estimates themselves. Although it has been argued that predic-
tions using Bayesian model averaging can outperform predictions
based on a single ‘best’ model (Raftery et al., 1997; Clark, 2007),



Fig. 6. Spatial estimates of deer density for scenario with four lowland conifer stands removed. (a) Mean of ensemble estimates from best Bayesian regression model, (b)

standard deviation of ensemble estimates from best Bayesian regression model (regression model details in Table 3). Legend as for Fig. 5—the four horizontally striped

lowland conifer stands are assumed to be removed for this model ensemble. Compare mean and standard deviation of deer density estimates with Fig. 5a and c, respectively.

Original forest cover map is shown in Fig. 1c.
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others caution that the method is still in its infancy and requires
further testing (Stephens et al., 2007). For forest managers working
under data constraints, parsimonious models are of particular
value. In our case, we suggest that the relatively large uncertainty
in the averaged model parameter estimates means that the model
from our suite of variables with the greatest posterior probability
(the ‘best’ model) is most useful.

A variety of management practices can be prescribed to control
deer density and moderate browse impacts on vegetation in forest
stands. For example, our results show that the proximity of
lowland conifer cover is positively correlated with winter deer
density, so judiciously chosen conifer stands could be removed to
reduce the suitability of nearby areas for winter deer habitat. The
current conservative philosophy toward harvesting lowland
conifer stands is seemingly at odds with this suggestion. Managers
are reticent to harvest these stands given the difficulty of
regenerating them and, like northern hardwood stands, deer
browse is implicated for their regeneration failure (Anderson and
Loucks, 1979; Rooney et al., 2002). However, management that
includes high intensity harvests but retains few residual mature
trees at low density (e.g., seed tree silvicultural systems) may both
provide adequate seed for regeneration and reduce winter deer
density (via eliminating thermal cover) long enough for regenera-
tion in both the former lowland stand and adjacent hardwood
stands to outgrow the reach of deer. There is evidence that many
cedar-dominated lowland conifer stands in the vicinity of our
study area are even-aged in origin (Heitzman et al., 1997),
supporting the notion that even-aged techniques (i.e., total or
near-total stand replacement) would be a viable means for
regenerating cedar given low deer density. Empirical trials should
investigate the efficacy of higher intensity harvests in lowland
conifer stands with the aim of decreasing deer populations to
promote regeneration in lowland conifer and/or adjacent hard-
wood stands.

As our data show, the design of these trials should explicitly
consider the spatial effects of adjacent stands as a factor
influencing deer populations. We can inform this design using
our spatial estimates of deer density. For example, from the land
cover map for the section of our study area examined above, we
removed four small lowland conifer stands (total area 0.18 km2)
that have a large area of surrounding hardwood stands with
relatively high estimated deer density and low uncertainty
(indicated by the horizontal stripes in Fig. 6). These character-
istics suggest the removal of these stands will maximize the area
and magnitude of decreases in deer density whilst minimizing
the total area of lowland conifers harvested. Using the ‘best’
model from our Bayesian analysis (Table 3), we produce a model
ensemble with the new scenario forest cover map (DBH of
northern hardwood stands is assumed to be unaffected in this
scenario). The spatial estimates for this scenario predict that by
removing the four lowland conifer stands (area 0.18 km2), mean
deer density in the 1.48 km2 of adjacent northern hardwood
stands is reduced from 18.2 to 7.9 deer/km2 (compare Figs. 6a
and 5a). Uncertainty for these areas with lower estimated deer
density is slightly greater than that in our previous map because
distance to conifer has increased (compare Figs. 6b and 5c), but it
is still low relative to the mean decrease in deer density for the
area (maximum standard deviation of pixel estimates is 2.6 deer/
km2 in the scenario map). It is important to highlight that even
though our model construction and inference is based on the best
current understanding of winter survival requirements for deer,
there is the possibility of incorrectly assuming that high quality
deer habitat is inexorably linked to high deer densities (van
Horne, 1983). Consequently, although spatial estimates of deer
density for multiple scenarios of timber harvest removal like ours
will be useful to guide where trials may be best located, they are
no substitute for empirical study of such management actions.

5. Conclusions

In this paper we have quantified the effects of local and regional
landscape characteristics on the spatial distribution of white-tailed
deer, produced maps of estimated deer density (and associated
uncertainty) using these quantified relationships, and shown how
this information can be used to guide co-management of deer and
forest regeneration. Winter white-tailed deer density in northern
hardwood stands of Michigan’s U.P. is negatively related to
distance to lowland conifer stands and mean northern hardwood
diameter-at-breast-height in the surrounding 12.5 ha. The esti-
mated deer density maps produced using Bayesian regression
model ensembles, with their associated uncertainty maps, provide
a means to identify areas where managers may most effectively
focus their actions. Information such as spatial distributions of
wildlife species as a consequence of local forest structure and
regional forest cover can aid the co-management of wildlife and
forests for ecological and economic sustainability.
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