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International agricultural trade has changed land uses in trading countries, altering global food security and
environmental sustainability. Studies have concluded that local land-use drivers are largely from global sources (e.g.,
trade increases deforestation in exporting countries). However, little is known about how these local land-use changes
affect distant locations, namely the feedback between them. Yet these distant impacts and feedbacks can be significant
for governing local land systems. The framework of telecoupling (i.e., socioeconomic-environmental interactions
between distant places) has been shown to be an effective conceptual tool to study international trade and the
associated socio-economic and environmental impacts. However, a systems simulation tool to quantify the telecoupled
causes and effects is still lacking. Here, we construct a new type of agent-based model (ABM) that can simulate land-use
changes at multiple distant places (namely TeleABM, telecoupled agent-based model). We use soybean trade between
Brazil and China as an example, where Brazil is the sending system and China is the receiving system because they are
the world’s largest soybean exporter and importer respectively. We select one representative county in each country to
calibrate and validate the model with spatio-temporal analysis of historical land-use changes and the empirical analysis
of household survey data. We describe the model following the ODD+D protocol, and validate the model results in each
location respectively. We then illustrate how the aggregated farmer agents’ land-use behaviors in the sending system
result in land-use changes in the receiving system, and vice versa. One scenario example (i.e., a high-tariff scenario) is
given to demonstrate the results of TeleABM. Such a model allows us to advance the understanding of telecoupling
features and the influence on land system science, and to test hypotheses about complex coupled human-natural
systems (e.g., cascading effect).
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Feeding the world’s population and achieving environmental sustainability is a grand global
challenge which calls for global efforts to ensure food security with increasingly scarce natural
resources, particularly land (Godfray et al. 2010; Lambin & Meyfroidt 2011). During the past several
decades, the international trade of food and agricultural products has grown exponentially, and
almost a quarter of food produced is traded internationally nowadays (D'Odorico et al. 2014).
Studies show that international trade can facilitate regional and global food security, especially
under the risk of climate change (Baldos & Hertel 2015).

The globalization of food production systems, however, has spatially displaced food production and
consumption activities in distant geographic locations. For example, the demand for palm oil in
emerging economies (e.g., China, India) has expanded into the tropics (e.g., Indonesia, Columbia)
and become a major driver of tropical deforestation that has global implications on carbon and
climate dynamics (Butler, Koh, & Ghazoul 2009; Furumo & Aide 2017). The international soybean
trade has caused rapid land-use changes and deforestation in Mato Grosso, Brazil, threatening not
only biodiversity but also regional hydrological conditions in the Amazon and Cerrado biomes
(Barona et al. 2010; Lathuillière, Johnson, & Donner 2012; Morton et al. 2006).

The challenges posed by international agricultural trade for land systems and land-use
sustainability worldwide call for a global perspective that goes beyond the classic place-based
research framework. A key component of land system science is place-based research, and most
land-use issues have been studied in the site-specific context of locally coupled human-natural
systems (Friis & Nielsen 2017; Liu et al. 2007; Van Vliet et al. 2015; Verburg et al. 2016). Although
important, this approach lacks a linked global perspective and may have overlooked the feedback
between the local changes and socio-ecological implications elsewhere when investigating land-use
changes of international trade (Chen et al. 2019; Friis & Nielsen 2017). For instance, place-based
land-use research has treated soybean trade as an external driver, focusing only on the
deforestation and land-use changes within the state of Mato Grosso (Barona et al. 2010; Garrett,
Lambin, & Naylor 2013; Morton et al. 2006). This mentality may lead to conclusions such as that
China and European countries have benefited from the exacerbation of the local environment and
natural resources (Lathuillière et al. 2014; Morton et al. 2006) and therefore overlook the potential
impacts to these importing parties.

To confront these shortcomings, the telecoupling framework is needed, which identifies causes and
effects between distant coupled human-natural systems through the flows of material, species, and
information (Liu et al. 2013; Liu et al. 2019). Since the first publication of the framework, there have
been almost hundred articles and studies that use this framework (Andriamihaja et al. 2019; Dou et
al. 2018; Liu 2014; Silva et al. 2017; Sun, Tong, & Liu 2017; Wang & Liu 2016; Yang et al. 2016),
suggested by a recent systematic review (Kapsar et al. 2019). Empirical studies have demonstrated
that telecoupled causes and effects on land systems can be significant (Dou et al. 2018; Silva et al.
2017; Sun et al. 2017). One example among many is the cascading effect. The soybean expansion in
Brazil has pushed corn from a dominant crop to a second place (only grown in the second season
that has higher climate risks than the first season). Adding factors such as trade and currency
exchange fluctuation has caused a shortage of corn within the Brazilian domestic food market (Silva
et al. 2017). For the importing countries, studies have found that soybean trade has also caused
land-use changes and negative environmental impacts (Sun et al. 2018, 2017; Tong et al. 2017).

These distant feedbacks, generated by land-use changes in agricultural frontiers and resulting in
land-use changes in the importing regions, require a system simulation tool for researchers to
study the flows and interactions between distant land systems and quantify effects of telecouplings
on land-use dynamics across scales and space (Verburg et al. 2019). Using a simulation model, a
series of overlooked research questions that link land-use demand and supply from different spatial



locations can be answered. For example, how do telecoupling processes (e.g., trade) and internal
processes (local land-use decision-making) enhance or offset each other in terms of their effects on
human-natural dynamics (land-use changes in telecoupled land systems), and what effects does
food production in the exporting countries at the national scale have on land uses in the importing
countries at local and regional scales, and vice versa?

Agent-Based Modelling (ABM) is a computer simulation tool in which a number of agents interact
with a dynamic environment and with other agents through prescribed decision-making rules. It
has been widely employed to simulate land-use changes in both theoretical and empirical grounds
(An 2012; Huang et al. 2014; Huber et al. 2018; Parker et al. 2003). The major advantages of an ABM
include its flexibility of incorporating any components of a system (Parker et al. 2003), the power of
aggregating heterogeneous behaviors (Huang et al. 2013), and the capability of representing
processes, social norms and structures (An 2012; Chen et al. 2014; Holzhauer, Brown, & Rounsevell
2019).

Current land-use studies usually focus on land-use changes in one place or system, as do most
land-use ABMs. To the best of our knowledge, no land-use ABMs are designed to investigate how
local land-use changes affect changes at distant locations, and vice versa. In other fields, scholars
have begun to experiment on linking multiple ABMs to represent the feedbacks across boundaries
and between systems, such as simulating human migration across different human-natural
systems (Thober, Schwarz, & Hermans 2018). However, the potential of using ABMs to represent a
telecoupled land system has rarely been discussed (Liu et al. 2015).

While the purpose of this paper is to introduce model implementation, as an example we use a case
study to explore the cascading effects and complex dynamics on land-use changes in two distant
places triggered by a sudden shock in a telecoupled flow, which is an increase in the tariff imposed
by China, the importer, on soybeans from Brazil, the soybean exporter. The ABM, here after known
as TeleABM, is the first to model and simulate complex dynamics and interactions in a telecoupled
land system. We first describe the TeleABM in the ODD+D protocol, discuss the land-use decision
representations in the two different land systems, show the validation of the model results, and
then demonstrate one sample simulation using the model. The objective of this model is to show
the land-use feedbacks between supply and demand in two distantly located land systems, which
are referred to as sending and receiving systems in the telecoupling studies, and to facilitate flow-
based governance schemes. Using the high-tariff scenario as an example, we address the question:
what are the land-use effects of telecouplings on the area of production in the exporting country
and the area of production in the importing country?

Model Descriptions Following ODD +D Protocol

This section describes the TeleABM following ODD + D (Overview, Design concepts, and Detail, with
the decision-making extension) protocol (Grimm et al. 2010; Müller et al. 2013; Polhill et al. 2008).
The common concepts of ABM (e.g., emergence, adaptation) are summarized in the Appendix; so
are the details (e.g., initialization, input data, submodels).

Overview

Purpose

The telecoupling concept and framework investigate socioeconomic and environmental
interactions over distances and have been conceptually and empirically applied to a variety of
cases. Some special land-use change effects (e.g. cascading effect, spillover effect) can, therefore,



be identified using the telecoupling framework. A comprehensive system model that can represent
and simulate land-use changes in telecoupled human and natural systems, however, is still lacking.
Built on the telecoupling framework and written in Java using the RePast platform, our model
simulates the land-use changes in sending and receiving systems and the interactions between
them. TeleABM is also designed to be flexible to model land-use changes in other telecoupled land
systems.

TeleABM is a hierarchical agent-based model to simulate soybean and other agricultural land-use
changes in distant places (e.g., Table 4 in the Appendix). The model version presented in this paper
uses the telecoupled Brazil-China soybean trade system as an example. The model is calibrated on
empirical data and/or interviews of individual farmers’ behavior rules, and aggregated to regional-
level land-use patterns and production to influence the soybean price in the other system. As a
systems simulation tool, this model is a powerful tool to study the complex dynamics of telecoupled
system compared to currently used approaches in the telecoupling field (e.g., network analysis,
case study).

Study area

One county, Sinop, Mato Grosso state, Brazil is used to represent the sending system and one
county Gannan, Heilongjiang province, China is the representative of the receiving system (Dou et
al. 2019). We chose these two counties as study areas because (1) the two counties are similar in
size, (2) soybean production is one of the main agricultural activities, (3) we conducted fieldwork in
both counties, and (4) their land-use changes are consistent with the overall trends in the major
agricultural commodity production regions in the two countries.

Agricultural intensification in the sending system

The main land-use phenomenon in Sinop the sending system is agricultural intensification. Multiple
studies have found that soybean production in Mato Grosso has shifted from predominantly single
cropping systems to majority double cropping systems (Figure 14 in the Appendix). The areas used
for single cropping increased from 20,056 hectares in 2004 to 30,885 hectares in 2014, while areas of
double cropping have grown almost 3.5 times to 102,810 hectares in 2014 (Kastens et al. 2017). The
growth in double cropping is strongly correlated with socio-economic development (e.g., measured
by income, literacy, and longevity) and agricultural intensification (Garrett & Rausch 2016; Spera et
al. 2014; VanWey et al. 2013).

Crop conversion in the receiving system

Since the soybean trade boom, farmers in Heilongjiang have converted large areas of soybean land
to corn and rice paddies (Figure 15 in the Appendix) (Sun et al. 2018; Sun et al. 2015). The
conversion from soybean land to corn land and rice paddies results in increased nitrogen pollution
(Sun et al. 2018) and largely alters the landscape, which affects biodiversity and regional water flux.
The land-use maps of the two systems are in Figure 1.



Figure 1. Land-use maps of the sending system and receiving system. (a) Land-use
map of Sinop, Moto Grosso in 2014 (Kastens et al. 2017); (b) Land-use map of Gannan,

Heilongjiang in 2010 (Sun et al. 2015).

Entities, state variables, and scales

The primary entities in this model are systems, agents and environment. All the entities are
hierarchically structured (Figure 2): systems, agents, and environments all have an abstract class in
the model with common properties shared between sending and receiving systems. The receiving
and sending systems are derived from the abstract module to create an instance of agents and
environments for the system with unique properties.

Systems in TeleABM include the overall telecoupled soybean system which has the sending system
and receiving system. The land-use changes in the sending and receiving systems are individually
represented and interact with each other through the flows of soybean trade, which together
constitute the telecoupled soybean system. In each system, there are agents interacting with the
environment.

Figure 2. Land-use maps of the sending system and receiving system.
Hierarchical structure of TeleABM. From the abstract module, the model can be

initialized and implemented to represent different systems (e.g., ABM-S, ABM-R). ABM-
S is made of modules that are used to represent the sending system, constituting

agents from the sending system (i.e., sendingSoybeanAgent, sendingTradeAgent,
sendingGovernmentAgent) and environment that represents the biophysical conditions
of the sending system. So is the ABM-R. The same shape of agents and environment in
these systems mean that they share the same basic features and functions; however,
different colours mean that the agents and environment in each system are initialized

differently as they may have unique attributes and functions.

http://jasss.soc.surrey.ac.uk/23/1/11/Figure1.png
http://jasss.soc.surrey.ac.uk/23/1/11/Figure2.png


Agents. In both sending and receiving systems, there are farmer agents, trade agents, and
government agents (Table 1). In the abstract class, a farmer agent has a list of general properties
(e.g., labor, capital, and land property) and a list of common abstract actions (e.g., land-use
decision, calculate cost and profit). Farmer agents can be instanced as farmer agent class in the
sending system (as a sendingSoybeanAgent class) or farmer agent class in receiving system (as a
receivingSoybeanAgent class) based on the system’s initialization. Attributes of agents are drawn
from household surveys, information from yearbooks, interviews, and mental models (a
mathematical pairwise association that semi quantitatively captures the qualitative knowledge and
perceptions of stakeholders (Gray et al. 2015; Mehryar et al. 2018) that were conducted in study
areas.

Additionally, there are government agents and trade agents. Government agents decide levels of
commodity tariffs, crop subsidies, and trade volumes. International trade agents determine the
soybean crop prices based on a partial demand-supply relationship and connect the two systems by
flows of soybean commodity and soybean price. Local trade agents disseminate soybean prices and
facilitate the trade by collecting soybeans from local farmers.

Table 1: Agent properties and functions. Note: the symbol • is the common
properties in the abstract module, while ✓ is the unique property that is not

shared between the two systems and - is for sub-functions.

Agent Class Property Function

Farmer Agent • land property,
labor endowments,
capital endowments

• read land uses from land-use
maps (initialization step)

• land cells with
current and
historical land-use
information

• get commodity price

• crop production
and profits

• step (execute every year,
including abstract function of
updating production, updating
costs, updating profits, and
land-use decisions, updating
land uses)

sendingSoybeanAgent diversifying
preferences

land-use decision in the
sending system

✓ diversifying
preferences

✓ land-use decision in the
sending system
- land-use probability
- expansion

receivingSoybeanAgent ✓ number of family
members

✓ land-use decision in the
receiving system

✓ household head
gender and age,
unhealthy
proportion,
dependent ratio,

- rice cultivation



knowledge of
soybean trade
✓ attitudes towards
soybean trade

- soybean and corn cultivation

- allocate crops to suitable cells
- expansion

Trade Agent • capital
endowments

• purchase soybeans and pass
local prices to local farmer
agents

• spatial coverage

sendingTradeAgent ✓ deliver the international
price to local farmer agents

receivingTradeAgent ✓ deliver the international
price to local farmer agents

internationalTradeAgent ✓ conduct the international
soybean trade

Government Agent • implement top-
down policies

sendingGovernmentAgent ✓ implement
environmental
policies

✓ SoyMoratorium scenario
(future scenario)

receivingGovernmentAgent tariff imported
crops and subsidize
domestic crops

✓ tariff scenario

Environment. The environment of TeleABM is based on a grid of cells, typically representing 900 m2

or 0.06625 km2 based on the land-use map resolution (e.g., in the current version, we use 250m 
250m land-use maps for the receiving county and 240m  240 m for the sending county, due to
data availability). Each cell has defined biophysical properties including empirical data (e.g.,
temperature, precipitation, elevation, and soil texture) and hypothetical data (e.g., cadastral
ownership) (layer A in Figure 3). Cells are assigned to and managed by farmer agents (layer B and C
in Figure 3). Crop yields are functions of fertilizer inputs and crop rotation, which are derived from
literature and expert opinions from both sites (see Table 4 in the Appendix. Local trade agents
interact with farmer agents who are within their spatial coverage (layer C and D in Figure 3), by
passing the crop price to these farmer agents and purchasing their crop products.

×

×



Figure 3. Layers and spatial representation. In layer B, colors represent different
types of land use (e.g., in the sending system, double cropping and single cropping; in

the receiving system, it is soybean, corn, and rice paddy). In layer C, patterns mean
different property ownership. In layer D, patterns mean trade coverage of different

trade agents.

Process overview and scheduling

The initialization of TeleABM includes three parts: 1) setting the global parameters (e.g., users
determine which system(s) to simulate, initialize farmer agents, use static crop price, empirical crop
price, or simulated international price), 2) reading land-use and other maps (e.g., suitability map)
and external files (e.g., empirical crop prices, subsidy); 3) initializing farmer agents and other
agents, including land cells allocation to farmer agents, agents properties setup (e.g. capital,
diversifying preference) according to empirical and/or hypothetical data, and farmer agents and
trade agents connections.

After initialization, TeleABM operates on an annual basis and is divided into major steps of (1)
human land-use decisions, (2) land cell changes and (3) annual accounting to update socio-
economic and environmental conditions (Figure 4). Once both sending and receiving systems are
simulated, telecoupling flows (e.g., the flow of soybean commodity and price) in the annual
accounting are triggered, via international trade agents, who facilitate trade and update crop price.

At every time step, the internal agent factors are updated first (e.g. last year’s crop cost and profit),
then farmer agents interact with local trade agents to obtain the crop price, which is either
exogenous (i.e., if only one system is simulated, price information is given in the price file) or
endogenous (i.e. the crop price is updated every year from the international trade agent). Farmer
agents in the receiving system allocate their resources to grow soybeans, rice, and corn. Farmer
agents in the sending system allocate their resources to grow a single-season of soybeans, a
double-season of soybeans and corn, and/or a double-season of soybeans and cotton.

Farmer agents pass the land-use decisions and associated agricultural input (e.g., fertilizer and fuel
use) to land cells and update the land use for the current step. Previous land uses are recorded to
land cell property. Land cells undergo ecological processes to generate the new crop yield and soil
organic matter in response to fertilizer use (Materials Submodels in the Appendix). Sending and
receiving systems have separate ecological processes that endogenize local-level environmental

http://jasss.soc.surrey.ac.uk/23/1/11/Figure3.png


variability. However, for simplicity, in the example simulation average crop yield is assigned to each
crop to highlight the land-use change aspects.

Once all agents and land cells are updated, the model moves to annual accounting steps during
which farmer agents’ profit is calculated and stored, as well as the environmental-impacts (i.e.
water usage, fuel input, and crop production). When both sending and receiving systems are
initialized, soybean production from the sending system is aggregated through the local trade
agents and sent to international trade agent as a flow, so that next year’s crop price is estimated by
the international trade agents (Figure 4). When only one system is initialized, the crop price is either
a static price from the initialization step or a dynamic price that is read in from a configuration file.
After this, the annual time step is finished and the model moves to the next time step.

Figure 4. Major steps in TeleABM flowchart (adapted from Murray-Rust et al. 2014).
Each system completes accounting its dynamics and communicates through the

telecoupling flow (i.e., soybean commodity and price) facilitated by the international
trade agent.

Design concepts

Here we introduce the theoretical and empirical background, the decision-making representation,
and the telecoupling flow. Common concepts of ABMs required by ODD+D are in the Appendix.

Theoretical and empirical background

Telecoupled soybean trade system

TeleABM is designed to test hypotheses that have emerged from the telecoupling framework (Liu et
al. 2013). Using the telecoupled soybean system as an example, our model can answer “what-if”
questions under alternative scenarios, such as the question in this paper “if China increases its
tariff on imported Brazilian soybeans, what land-use outcomes will occur in Brazil as well as
China?”. The simulation results from addressing this “what-if” question can be used to evaluate the
relationship between the telecoupling process (e.g., trade) and internal processes (e.g., local land
use), and to test cascading effect hypothesis (e.g., changes in one land-use system radiate outward
to land uses in other systems). Practically, we ask this specific question concerning the current
soybean tariff disputes between the United States and China. We hope that although the simulated
scenario is between Brazil and China, the land-use consequences can still inspire policy makers in
all trading parties.

Individual decision making

http://jasss.soc.surrey.ac.uk/23/1/11/Figure4.png


We utilize different approaches to construct and validate the land-use change patterns in the two
systems due to different fieldwork approaches and data availability. In our case, a household survey
was conducted in the receiving system and a mental modelling approach (Özesmi & Özesmi 2004;
Van Vliet, Kok, & Veldkamp 2010; Voinov & Bousquet 2010) was used per the project requirement
and situation in the study sites (Dou et al. 2019).

Representing decision making in the sending system

Several factors have been indicated to be main drivers of the agricultural expansion and
intensification in Mato Grosso, Brazil (Garrett et al. 2013; Garrett & Rausch 2016; Richards et al.
2012), such as topography, climate conditions, and distance to the closest ports. Land-use history is
also an important factor in Mato Grosso, because soybean land often replaces land deforested for
pasture or previously under pasture. Due to data availability and research interests, we select the
previous two-year land-use history (to be consistent with the usual practice in the field (Spera et al.
2014), yield, profit, and elevation, slope, distance to ports, and distance to urban area as
explanatory factors (Table 2). Soil property is homogenous in Sinop; therefore we exclude it for this
analysis. Using the crop cover maps from 2001 to 2014 that are provided by Kastens et al. (2017), we
apply a multi-nomial logistic regression to calculate the probability of agricultural land use at year .

(1)

where  is the land cover type  at year , , and . Land cover at year  is the function of
previous land covers,  is the cost of type  land cover at year ,  is the yield of the
land cover  at year ,  is the profit of crop  at year .  is the frequency of crop  at a
specific cell across all years. We feed logistic regression when 2006 and 2011, because we
only have cost information in years 2000, 2005, 2010, and 2015, and land-use maps from 2004 to
2014. The results of parameters for this logistic regression are implemented in the decision-making
module of farmers in the sending system. To compensate for temporal change and preference of
intensification that is limited by the regression, we calibrate the probability for single cropping (i.e.,
subtract by 0.02 every year to match the decreasing trend) and double cropping (i.e., increase the
probability by 0.02 every year) over time in the model.

Table 2: Empirical values of land-use characters in the sending system

Unit
(real/ha)

single-
soybean
gross
return

soybean-
corn
gross
return

soybean-
cotton gross
return

single-
soybean
cost

soybean-
corn
cost

soybean-
cotton
cost

year
2005

1833 3125 12148 1975 4410 8140

year
2010

2475 4285 11628 1611 3531 6529

Unit
(meters)

distance
to urban

distance
to roads

elevation Slope

mean
value

17830 8173 364.6 0.982

In addition to land-use probability, farmers’ decision making is incorporated. Two factors (i.e.,
capital capacity and preferences for diversification) are identified as significant by soybean
producers that we interviewed during fieldwork. In the model, even if the probability suggests

t

prob(l ) = f (l , l , , , , elevation, slope, distance)ci,t ct−1 ct−2 Ci,t−1 Pi,t−1 Si

lci i t t − 1 t − 2 t

Ci,t−1 i t − 1 Yi,t−1

i t − 1 Pi,t−1 i t − 1 S i

t = t =



double cropping, farmer agents would only be able to implement single cropping without enough
capital endowments. The other property, “pro-diversifying”, is extracted from the fieldwork
conducted by our team in the summers of 2016 and 2017. The preliminary analysis suggests that
farmers in Brazil have different risk-taking attitudes. In current simulation, farmer agents are split
evenly between the two risk-taking attitudes (50% simulated agents as “pro-diversifying” and 50%
not) as a hypothetical distribution to even out the effects of this attitude, which will be explored in
future work. The pro-diversifying farmer agents have a higher probability of choosing double
cropping over single cropping when all other factors hold the same.

Representing decision making in the receiving system

The land-use changes in the receiving system mostly appear on small-scale farms which are
operated by household labor. It is necessary to first establish crop suitability maps because rice
paddy needs special topography and water condition. We then analyze land-use changes based on
the extensive household survey conducted in the summer of 2017 to quantify the land-use
decisions at the household level.

Crop suitability

First, empirical data on soil type (Institute of Soil Science-Chinese Academy of Science 2019; Liu et
al. 2006), accumulated temperature (  10 C) (Li et al. 2014; National Meteorological Information
Center 2019), distance to water and distance to roads (calculated using ArcMap) are collected. Then,
the multinomial logistic regression is used to calculate the probability based on the 2005 and 2010
spatial distribution of the three crops classified from remote sensing images and these land-use
factors. This probability of crop presence is used as a proxy for suitability which is a common
practice in land use and ecological modelling (Chen et al. 2010; Magliocca, Brown, & Ellis 2013;
Walsh et al. 2013). Last, the higher probability among the two time points is selected as the crop
suitability, in case suitability has changed due to crop conversion (Figure 5).

The choice of which crop to grow is a complex decision, and it is particularly true among
smallholder farming households (An 2012; An et al. 2005; Huber et al. 2018). The representation of
farmers’ land-use decisions crucially depends on the purpose of the study and the attributes of the
system. There are many decision-making mechanisms and rules used in modelling farmer agents’
crop choice, among which the statistical regression model is often used to describe the relationship
between land-use patterns and empirical farmers’ attributes (e.g., LUDAS, see Le et al. 2008; Chen
et al. 2014). Many factors have been noted crucial to the crop/land-use choices by smallholders,
such as the dependent ratio that measures the number of dependants to farm workers and reflects
the number of mouths each worker feeds (Chayanov 1966; Le 2005), the gender ratio that measures
the number of adult males over the total number of family members (Walsh et al. 1999), the
education level of the household heads and family members (An et al. 2002; Dou et al. 2017), and
the size of off-farm income (Dou et al. 2017; Yang et al. 2018).

≥
∘



Figure 5. Crop suitability in Gannan, Heilongjiang (receiving system).

Table 3: Household characters in the receiving system

variable
abbr.

HHage Hfm Rdep Rg Edu Ns Nm Ruh

variable
names

Household
head age

number
of family
members

dependent
ratio

gender
ratio

average
school
years

number
off- farm
salary

number
of big
machines

unhealthy
proportion

mean
value

44.8 3.672 0.2184 0.1346 9.721 0.4647 2.908 0.05615

variable
abbr.

Ad Ap FCsoybean FCcorn FCrice GIsoybean GIcorn GIrice

variable
names

rain-fed
area (ha)

paddy
area (ha)

soybean
fertilizer
cost
(yuan/ha)

corn
fertilizer
cost
(yuan/ha)

rice
fertilizer
cost
(yuan/ha)

soybean
gross
income
(yuan/ha)

corn
gross
income
(yuan/ha)

rice gross
income
(yuan/ha)

mean
value

3.371 2.198 347.2 870.1 1054.2 2847 4595 4599

variable
abbr.

HHg K HHedu DEL

variable
names

household
head
gender

whether
know
soybean
import

education of household head

head
count

male 400;
female 11

No: 146;
Yes: 265

illiterate: 2 elementary
school: 56

middle
school:
261

high
school:
79

college:
13

In the receiving system of TeleABM, several tiers of statistical relationships are used to represent
the land-use behaviors of these farmer agents (Figure 6). If agents engage in agriculture in a given
year t, they 1) first decide the proportion of rice to cultivate on the whole property, 2) decide the
proportion of soybeans and corn to cultivate, and then 3) allocate cells that are suitable for
cultivating these crops. Data on farmer agents’ attributes were collected during a household survey
in the year 2017 (total count: 411, Table 3), which were tested for collinearities and used for
calculating the statistical relationships.

Rice cultivation proportion among rice-farmers
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(2)

The receiving land-use module calculates the proportion of rice in a receiving farmer agent at the
current year t using regression analysis. Only the rice cost and profit are used to calculate this
proportion (  and  are rice cost and gross income at the year ). These variables (Table 3)
are initialized following the empirical distribution using the Monte Carlo approach. The proportion
of corn and soybeans is assigned using the distribution of the two crops collected from the survey.

Soybean cultivation proportion in non-rice farmers
For farmer agents that do not grow rice, the proportion of soybeans is calculated using the
following regression equation, and the corn proportion complements to 100%. This is because
based on soybean and corn suitability, soybeans and corn are likely interchangeable. The  and 

 here are soybean cost and gross income at the year .

Allocate cells
For a receiving farmer agent  that owns  number of land cells, it first sorts its  land cells by rice
suitability and then allocates  to cultivate rice for year . However, these cells
have to be either rice paddy, or next to a rice paddy or water. Otherwise these cells are assigned to
grow soybean or corn. The rest of the cells are sorted by soybean and corn suitability and allocated
to soybean and corn cells respectively.

Property expansion
A receiving farmer agent can also reclaim non-agricultural cells as agricultural cells. We assume
that every year the agent reclaims some new areas as agricultural land (i.e., follows a 0.2, 

0.05 Gaussian distribution for a hypothetical constant-paced expansion). The reclaimed cells are
assigned to the highest profitable crop.

Figure 6. Decision-making process in the receiving system of TeleABM (ABM-R).

Telecoupling features

TeleABM can simulate solely the sending system and its land-use changes, or the receiving system
and its land-use changes, or both systems and their telecoupled interactions during one simulation.
In this section, we describe how the telecoupling feedbacks are represented in this model.

Model structure of telecoupling feedbacks

In each system, there are one government agent, local trade agents, and farmer agents. The two
systems are connected through an international trade agent (Figure 7). In the sending system,
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farmer agents make land-use decisions based on a local soybean price ( ). Local trade agents
purchase soybeans from local farmer agents, which are aggregated to the international trade
agent. The total traded volume of soybeans from the sending system affects international soybean
price ( ), which is passed to trade agents in the receiving system. This price is then distributed to
local farmer agents ( ). The government agent in the receiving system sets up a subsidy based on
the aggregated soybean production in the receiving system, which aims to meet a certain quantity
of domestic production.

Telecoupling flows in the model

Many factors affect international soybean trade and thus change the soybean prices. Such factors
include tariff disputes, transportation system improvements, favorable climate conditions or
climatic hazards, and exchange rate fluctuations. It is unrealistic to include all potential factors and
relationships in one model. We simplify the model by focusing on the land-use changes driven by
the soybean supply and demand dynamics only. Several assumptions are applied to this
international trade simplification: 1) the supply and demand relationship between Brazil and China
determines their traded soybean price; 2) the two counties used as model examples represent the
average land use and trade conditions in the two countries. In TeleABM, we use several
relationships (e.g., elasticity) between soybean price and the supply-demand quantity obtained
from literature to represent the dynamics of telecoupling flows between the sending and receiving
systems.

Figure 7. Telecoupling feedback loop. Local trade agents aggregate all soybean
productions from farmer agents in the sending systems and send the soybean as a
flow to the international trade agent. This amount determines the soybean price in
the international market (pfob, short for free on board), following a supply-demand

relationship. This international price is disseminated to local trade agents in the
receiving system as pr (i.e., short for price in the receiving system) and in the sending
system as ps (i.e., short for local price in the sending system). Local trade agents then

provide the local soybean price to farmer agents in the two systems. Solid lines
represent soybean trade and price while dashed lines are policy and information.

Sending system affects international soybean prices

We assume the supply of soybean production affects the international soybean price ( ), and we
use an export demand elasticity to measure this dynamic. The export demand elasticity measures
the percentage change in exports associated with the 1% change in the price of the exporting
country  (Reimer2012). We assume this export demand elasticity is fixed in the short run, and
pfob is only affected by the supply changes resulted from mixed production changes ( )
in the sending system that are caused by climate, land-use change, and other factors. We apply the

ps

pfob

pr

pfob

pfob

−Qt Qt−1
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empirical point elasticity (-0.9) obtained from (2012) and calculate the price at year  given export
change and price at year .

(4)

(5)

 is the point elasticity of export demand (-0.9 estimated by Reimer et al. 2012).  is the quantity
of soybeans produced in Brazil, and  is the soybeans exported from Brazil to China. We assume
that the demand of soybeans from China is unlimited and all the soybeans produced in Sinop,
Brazil, are taken by the international soybean trade agent without tariff dispute. Therefore,  in
this equation equals soybean production ( ) in the sending system (we assume that the simulated
county Sinop is a representative of Brazil) in the no-tariff scenario in the model (for tariff scenario, 

 is changed, see below at the section of high-tariff scenario). pfobt is the traded soybean price
(free on board) at year . The soybean production ( ) in the sending systems is endogenous from
the model, except the initial one that is given.

International soybean price conversion to local prices

To local prices in the sending systems: Local prices in the sending system could also be impacted by
its external factors, such as the global fuel price (  US\) per gallon), the proportion of Brazilian
soybean production over the global soybean production ( ), and the proportion of Chinese
soybean import over the global soybean production ( ), 2009 “zero-deforestation” supply-chain
initiative (Gibbs et al. 2016) ((ZD dummy (0 no, 1 yes)). Global soybean production reflects the
climate effect and the global economy. Fuel price has proved a significant factor in global
agricultural trade. The proportion of soybean import over global soybean production reflects the
overall economy and demand of China. We thus convert international soybean prices calculated
above to Brazil’s local soybean prices using the following calibrated regression:

(6)

To the local prices in the receiving system: We employ a price transmission elasticity function (Reimer
et al. 2012) to convert international soybean prices ( ) to China's local soybean prices ( ), given
local prices in the last year ( ), the current international soybean prices, the trend (\textit{year}),
together with several other exogenous factors used above (i.e., , ), as well as local prices of
corn and rice at current year  (  and ). Local prices of corn and rice in the current year
represent government policy on stockpiling and incentives. This price transmission function from
international soybean prices to China's local prices can be specified as:

(7)

where the  are parameters estimated based on empirical data.Digitare l'equazione qui.

High-tariff scenario: elasticity of China’s soybean demands
In a high-tariff scenario, we try to investigate the soybean import volume changes due to the tariff-
driven price increase. A tariff increase in China that imposed to Brazilian soybeans will boost
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China’s received soybean prices from Brazil ( ). For this purpose only, we apply a bilateral import
demand elasticity  for China with respect to Brazilian soybeans. It means that a price increase in 

 will lower China’s soybean imports and thus impact Brazilian soybean exports and production.
We followed the method from Reimer et al. (2012) and calculated the import demand elasticity of
China with respect to Brazilian soybeans using the data over the years of 2009-2015 (Hjorth &
Wilensky 2019; Bank 2019; UN Comtrade 2019). The import demand elasticity measures the
percentage changes of import quantity  with respect to one percent changes in Brazilian
soybean price . We use data after 2009 to avoid the potential noise of 2007 and 2008 when there
was a world food price and economic crisis. The calculated elasticity  is approximately -0.29,
meaning one percentage increase of soybean import price will reduce China's import by 0.29
percent.

(8)

where  is the point elasticity of import demand (-0.29 as calculated above).  is the change of
import quantity caused purely by the tariff increase. This value is zero in the no-tariff scenario,
because we assume all produced soybeans from the sending system will be bought and consumed
by the receiving system. In the tariff scenario, this value is subtracted by the sending soybean
production at year  (i.e., ), to indicate the decline of import demands caused by
the higher price resulted from the tariff.  is the imported soybean quantity from last year 

 (which is equal to the export quantity from the sending system).  is the lagged soybean
international price from last year .

Validation

The validation of TeleABM requires two sequential processes: validation of the sending/receiving
system independently, and then the validation of the flow between them. Due to different data
availability and decision-making representation in the two systems, the validation methods are also
different.

Validation of decision making in the sending system

Two years’ (t = 2007 and t = 2012) land-use data are selected to validate the regression results using
the receiver operating characteristics (ROC curve, presented in Figure 8). ROC is a commonly used
measure of goodness-of-fit in classification problems (Chen et al. 2014; Sun & Müller 2013). A ROC
curve is derived by plotting the rate of true positives versus the rate of false positives. We select
years 2007 and 2012 because one is in the earlier period and the other is at the later period over the
simulated 10 years (2005-2015). The areas under the ROC curve for all three crops in both years are
larger than 0.8.
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Figure 8. Validation of the sending system. ROC curve for simulated and empirical
land use in the sending system: The ROC value for double-soybean, single-soybean,

soybean-cotton for (a) the year of 2007 are: 0.9061, 0.8695, 0.9631, and for (b) the year
of 2012 are: 0.8672, 0.8345, and 0.8974.

Validation of the receiving system

In the receiving system, pattern-oriented modelling approach (POM) is used to calibrate and
validate the simulation results. The POM is a strategy to construct and validate the model with
multiple observed patterns at different scales and scopes of the modeled complex system (Castella
& Verburg 2007; Grimm & Railsback 2012; Grimm et al. 2005). If a model can reproduce multiple
patterns observed in real systems, we think it is less likely to falsify the model design than the ones
that reproduce only one or no pattern. We compare patterns of agricultural land-use change at two
levels: the crop planted areas and proportion at the county level (the aggregated area and
aggregated proportion) (Figure 9) and the soybean proportion at the household level (Figure 10).

At the aggregated level, the slope coefficients between time and the simulated crop area are
compared with the slope coefficients between time and the empirical crop area by t-test (e.g., we
compute the t-test statistics by dividing the difference between the two slopes over the residual
variance see Wuensch 2018). The results are not significant for all three crops, which indicate that
the receiving system of TeleABM can reproduce the changing pattern of planted areas and the
proportion of the three crops.

Figure 9. Aggregated land-use area and proportion change in the receiving system.
The x-axes are years (from the year 2006 to 2015, or the year 1 to 10 in simulation).

The y-axis is either crop area or proportion. Figures in the left panel are the areas of
three major crops (from top to bottom: (a1) soybean, (b1) rice, and (c1) corn). The red
dots are the real crop planted area from yearbooks (note that some data are missing,
so at certain years there are no actual land-use data; in addition, there is a systematic
gap between actual land-use data from yearbooks and remote sensing classified land-
use maps, we add a constant value to the actual area to match with the land-use map

that is used for simulation, for example, 23,719 ha for soybean) and black dots are
simulated results. Figures in the right side panel are the proportion of each crop in the
total planted area (from top to bottom: (a2) soybean, (b2) rice, and (c2) corn). Because
we have 20 replicates for the same model initialization, we have 20 black dots on every

year.

At the household level, the soybean proportion of each agent (i.e., simulated soybean area over the
total household agricultural area) at the beginning of the simulation (year 1) and at the end of the
simulation (year 10) are recorded and compared with the reported soybean proportion from the
household survey. The pattern of individual soybean proportion is that more farmers abandoned
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soybean cultivation or largely reduced the soybean proportion. Although the simulated soybean
proportion distribution is not statistically identical to the observed distribution (using Kolmogorov-
Smirnov test), we believe that the model can represent the pattern of farmers reducing and/or
abandoning soybean production in the receiving system. The difference in distribution may be due
to the hypothetical initialization of properties.

Figure 10. Simulated soybean price and empirical soybean price. Distribution of
soybean cultivated proportion at household level in the receiving system. On the x-

axis is the soybean proportion (areas cultivating soybean over the entire family
property) and on the y-axis is the number of farmers (agents) with this proportion.

The upper panel (a) is the distribution of soybean proportion among the interviewed
411 households (y-axis is from zero to 120 farm households). The left panels (a1 and

b1) are their soybean proportions 10 years ago while the right panels (a2 and b2)
present the current soybean proportion. The lower panel (b) is the simulated

distribution (y-axis is from zero farmer agents to 6,000 simulated farmer agents).

Validation of the telecoupling feature

The soybean price in the sending system is affected by the production change in the sending
system and this price will affect the local soybean price in the receiving system along with other
factors such as fuel price. Therefore, the simulated soybean prices in both systems are compared
with empirical data, and t-tests show no significant difference which indicates the telecoupling
module of our model can reproduce the empirical price dynamics (Figure 11).

Figure 11. Simulated soybean price and empirical soybean price. The unit in the two
systems are local currencies: (a) real/kg and (b) yuan/kg respectively. T-test results for
the empirical and simulated soybean price in both systems are not significant, which
indicates that the simulated and empirical soybean prices are from the same sample

distribution. Empirical prices are adjusted for inflation.

A Sample Simulation
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To show how the results can be used to understand telecoupling features, we include a simple
sample simulation. The sample simulation has two settings: (A) Baseline scenario - no tariff, and (B)
High-tariff scenario - 25% tariff. In scenario (A), a business-as-usual international trade is assumed.
This means that the international soybean price is determined only by the change of soybean
production from the sending system, as well as the exogenous global factors such as average
global fuel price. In scenario (B), a 25% tariff is charged on the soybean production from the
sending system to the receiving system starting from simulated year 5. The soybean price is then
affected by both the import demand elasticity and export demand elasticity. All the other settings
are the same. To eliminate randomness in the initialization and modelling process, 20 replicates are
simulated for 10 years each.

Less agricultural intensification in the sending system at the tariff scenario

The land-use changes in the sending system under the tariff scenario are compared to the baseline
scenario (no tariff) (Figure 12). Both scenarios indicate that the double-soybean planted area
(soybean-corn) increases while single soybean cultivation decreases. However, when the tariff
charge starts at year 5, fewer cells are converted to soybean-corn each year, and more cells are
converted to single soybean compared to the business-as-usual scenario. This suggests that the
tariff slows down the intensification on Brazilian soybean farms, because farmers may not be able
to prepare for a second growing season since they get less profit from the soybean trade.

Figure 12. Annual land-use changes: (a) single soybean and (b) soybean-corn in the
sending system in the sample simulation. The tariff becomes effective starting from

year 5. Hence we show results starting from year 4.

Cascading effect on the land-use changes in the receiving system

A cascading effect (i.e., chain events caused by the trade of one crop affecting other systems and
components (Silva et al. 2017) is also observed in this sample simulation. The tariff not only affects
the land uses in the sending system but also affects land-use changes in the receiving system
(Figure 13). The tariff drives the Brazilian soybean price and production down due to less demand
from China which, in turn, affects the international soybean price. In the receiving system, because
soybean imports are lower than domestic demand, the government agent provides a subsidy to
local farmers for added soybeans to their crop cultivation (5,000 yuan/ha). This changes farmers’
preference from corn to soybeans and slows crop conversion from soybeans to corn in the
receiving system. The differences between the baseline scenario and the tariff scenario in the
receiving system start from year 6, which is one year later than the sending system (year 5) as a
cascading effect.
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Figure 13. Annual land-use changes: (a) soybean and (b) corn in the receiving system
in the sample simulation.

Discussion

Different approaches used for receiving and sending system land-use
simulation

To the best of our knowledge, there is no model in current ABM applications that represent two
distant land systems in one model. As mentioned above, the individual systems in our model (i.e.,
sending and receiving systems) vary in agent attributes, behaviors, interactions, and market
structure. One of the challenges of building telecoupled ABMs is to represent the land use and
decision making of two very different land systems. Moreover, the available datasets for the two
systems are most likely not interoperable. Fieldwork outcomes from the two systems are also very
different: a quantitative database that details hundreds and thousands small farming households’
characteristics and land-use information in the receiving system, and a mixed qualitative and
quantitative dataset that describes dozens of large soybean producers in the sending system. The
key is to identify the common features and variations in both systems and minimize the modelling
workload. This is discussed in detail in another article that focuses on the design philosophy of
TeleABM (Dou et al. 2019).

Aggregated errors from local simulation to telecoupling simulation

Another major challenge of TeleABM is validation, similar to many other modeling efforts (Van Vliet
et al. 2016) . The validation of ABMs can use either the structure or the model outcome (Evans 2012;
Millington, Demeritt, & Romero-Calcerrada 2011). For TeleABM, we need to validate both the
individual system as well as the flows between the two systems. Therefore, in total three validations
are conducted for TeleABM. Validation methods for the sending and receiving systems differ and
are based on data availability. For the sending system, the land use is validated by using a ROC
curve while in the receiving system, the land-use simulation results are validated by the pattern-
oriented approach. The flow between the receiving and sending systems is compared to the
simulated soybean price with the historical local soybean prices. Based on insights gained during
the validation process, we recommend the integration of many datasets from multiple coupled
human-natural systems into a common, interoperable database following the telecoupling
framework. This will eliminate errors for calibration and validation.

The flow between the two systems is represented by the supply and demand function and
calibrated with several other global factors (e.g., average fuel price). For validation, we use the
simulated soybean supply from the sending system to feed the international soybean trade agent,
which is different from the empirical soybean supply. Although this difference (between empirical
soybean supply and simulated soybean supply) is within the acceptable range, it may be passed
from the international soybean trade agent to local soybean trade agents in China, creating a larger
deviation of soybean price in the receiving system from the empirical soybean price.
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Alternative modelling structures

One of the shortcomings of ABMs is the YAAWN syndrome (Yet Another Agent-Based Model …
Whatever… Nevermind…), which addresses that many ABMs in land science are case-specific
(O’Sullivan et al. 2015). There have been attempts to easily apply ABMs from one place to other
places, such as proposing generalized modelling frameworks including MP-MAS (Marohn et al.
2013; Schreinemachers & Berger 2011) and the CRAFTY framework (Arneth, Brown, & Rounsevell
2014; Blanco et al. 2017; Murray-Rust et al. 2014), or using inter-model comparisons to identify the
common attributes and functions (Huber et al. 2018; Parker et al. 2009).

The presented model is constructed from empirical data and common variables from land system
science, rather than following CRAFTY or a similar modelling framework. This is because these
frameworks are often accumulated from European land-use changes and modelling. It may
underrepresent certain important features if applying such frameworks in agricultural frontier
(Brazil) or in small farming households (China), or require rich datasets to calibrate. As new
research pointed out, in urban studies the field is dominated by global north researchers which
underrepresent urgent issues in the global south (Nagendra et al. 2018). Our decision-making
processes in the sending and receiving systems are both based on widely used statistical methods
(e.g., logistic regression); hence it can be easily adopted by other cases with similar properties.

Some scholars have suggested to the first author to use individual ABMs and then connect the
simulation results in a different program (e.g., system dynamics models or computable general
equilibrium model) instead of the current format as simulating multiple systems in one model. This
indeed is the approach that another project adopted for studying the telecoupling land-use
changes in Brazil (Millington et al. 2017). However, we argue that the focus of this other
telecoupling project is solely on the local land-use changes in Brazil in the telecoupled soybean
system. What we care most about and what insights our model can offer is the causes and effects
of local land-use changes on the other land systems. Moreover, if we externalize the feedbacks in
another program, the validation might be an additional challenge since it is difficult to adjust the
chain of changes in local land systems caused by the change from the flow.

Future directions and policy implications

The design, development and implementation of the first ABM that represents land-use changes in
two systems distantly connected through trade flows opens new research avenues for many issues
in different research fields, such as the sustainable governance in land system science and
environmental impact assessment of international trade. In the present study, we simplify
international trade dynamics by only modeling flows between the sending and receiving systems.
Future work could expand upon this by simulating flows between multiple senders and receivers as
well as flows to spillover systems. For example, TeleABM could be expanded to include land-use
change in the United States, the second largest soybean producer and exporter. Producers in the
U.S. are affected by trade dynamics between Brazil and China and vice versa. Spillover systems are
one of the most elusive and underrepresented components in current telecoupling studies (Jianguo
Liu, Dou, et al., 2018). For example, TeleABM could be improved by including some emerging
soybean producing regions (e.g., Argentina, Uruguay).

TeleABM can play multiple roles within land system science and can be used to derive policy
implications. First, TeleABM addresses the omission of distant land-use actors and processes in
current land-use modeling practise (Verburg et al. 2019). The underlying mechanisms of certain
land-use demand that are generated from outside of the modeled area can be explicitly
represented in one model. Second, we can employ the model to simulate potential policies and
technology changes in one system and evaluate the responses in its telecoupled partners. For



example, in the high-tariff scenario, potential subsides from Brazilian government to local soybean
farmers could reshape land uses in China. In the future, improvements in domestic transportation
and port access will influence Brazilian farmers’ production decisions and thus potentially affect
China’s land-use changes. Meanwhile, China’s efforts to protect its natural land cover (Liu et al.
2018), such as the Grain-to-Green Program (Liu et al. 2008), could reduce China’s crop production,
incentivize imports from its trading partners, and impact land uses in the exporting country. Lastly,
as a tool to analyze distantly coupled human-natural systems, TeleABM can enable researchers and
policy-makers evaluate potential trends and policies, such as land consolidation and crop diversity,
to achieve food security and sustainable development in the overall food production system
including both importing and exporting regions.

Conclusion

In this study, we develop TeleABM, a novel telecoupled agent-based model using a hierarchical
modelling structure and the telecoupling framework. The validated model is used for a sample
simulation of a high-tariff scenario on international soybean trade and the effects on land-use
changes in both sending and receiving systems were demonstrated. TeleABM is useful in three
major aspects. First, it fills a gap in current land systems science. Besides assessing the one-way
land-use changes under external forces, it demonstrates land-use feedbacks between distant land
systems. Second, it is a valuable research tool for testing telecoupling hypotheses and quantifying
telecoupling relationships across distant land systems. Last, the experiences and lessons learned
through its construction can be used to advance the methodology of agent-based modelling, since
no ABM has simulated more than one land system simultaneously.
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Model Documentation

The model was implemented in RePast Simphony 2.4 (https://repast.github.io/download.html). The
code is available at: https://www.comses.net/codebases/c7e925e0-a228-4e56-81e9-
07455f453497/releases/1.0.1/.

Appendix

Table 4: General description of sending and receiving systems

Year Sending system Year Receiving system
Sinop, Mato Grosso,
Brazil

Gannan, Heilongjiang,
China

area (km2) 3,194 4,792

population 2017 135,874 2012 390,000
soybean planted area
(km2)

2017 1,437 2012 318

https://repast.github.io/download.html
https://www.comses.net/codebases/c7e925e0-a228-4e56-81e9-07455f453497/releases/1.0.1/


soybean production
(tons)

2016 403,200 2012 56,335

soybean yield (kg/ha) 2016 3300 2015 2007

Figure 14. Land-use changes in the sending system, Sinop, from 2004 to 2014 (Kastens
et al. 2017).

Figure 15. Land-use changes in the receiving system, Gannan, from 2000 to 2012.
Data source: (Heilongjiang Provincial Bureau of Statistics & Survey Office of the

National Bureau of Statistics in Heilongjiang 2018).

Common ABM concepts represented in the model

The feedback between distant places is the primary feature of TeleABM. To follow the ODD+D
protocol, we still document the following properties even though some concepts are not used in
this paper.

Emergence

Farmer agents’ land-use behaviors are expected to vary when their characteristics are initialized
differently, the crop subsidy changes, and by the trading/climate scenarios. The expansion of rice
paddy in the receiving is expected to emerge as well as the expansion of soybean-corn in the
sending system.

Adaptation

Farmer agents do not change their decision-making rules. However, they adjust their land-use
behaviors according to the crop price, profit, labor, previous land use, and other factors.

Objectives

Farmer agents in both systems try to maximize the suitability of the land cells in their property.

Learning
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Farmer agents in the two systems update the crop profit every year. They also learn from their
neighbors about the crop profit and use it to decide next year’s land-use decision, if they do not
grow the crop at current year.

Fitness

No survival fitness is included in the model.

Prediction

Farmer agents are not able to predict accurate crop price for next time step.

Sensing

Farmer agents can sense the crop profit of neighbour agents if they themselves do not grow this
crop.

Interaction

Direct interactions occur between farmer agents and local trade agents. Direct interactions also
happen between neighbour agents from observing each other and affecting the landscape (e.g.,
only when a neighbouring cell is rice paddy one can change it to rice paddy). Indirect interactions
occur between farmer agents in the sending and receiving systems through international trade
agents. Farmer agents also interact with the environment through land-use decisions and
management.

Stochasticity

Farmer agents have individual variation in attributes and decision-making parameters, which are
drawn from survey data and set as statistical distribution. Furthermore, noises are added to crop
management (e.g. a random number is added to fertilizer input and yield) and crop price (e.g. the
crop price sensed by farmer agents have a small random value).

Collectives

The crop production from individual farmer agents is aggregated at the end of each time step, and
enters the international trade agent. The crop price generated by the international trade agent later
affects the individual land-use changes in both systems. Government agent also implements certain
policies by reviewing the aggregated land-use results.

Heterogeneity

Heterogeneity is represented by farmer agents’ properties, such as farm size and education. It is
also determined by varying certain decision-making features, such as pro-diversifying in the
sending system.

Observation

At each time step, land uses are recorded at each farmer agent level, as well as their capital and
environmental usage (e.g. fertilizer use, yield, water usage).

Path dependence



Land-use decision of cell i at step t is affected by the land use of this cell at previous steps. The
influence comes from (1) soybean farmer agent’s knowledge of different crops, (2) land-use history
that affects current crop choice and yield, (3) neighbours’ land-use conversions from and to rice
paddy can affect the possibility of agent’s rice paddy decisions.

Details

Initialization

The initialization includes three parts: 
Users set up global parameters: users determine which system(s) to run simulation on, the
scenario of crop prices, and number of initial farmer agents and vision.

static crop price: the model reads crop price written by users at the panel, and will stay the
same over the simulation time steps
dynamic crop price: the model reads files that include crop price at every year
telecoupling feature: the model has sending and receiving systems, and exchange price
information during simulation.

The model reads configure files and maps to initialize land cells:

crop land-use maps from remote sensing data
empirical crop suitability map
empirical or hypothetical soil map

The model initializes agents and their characteristics:

initialize parameters for each system, such as the range of production cost
several attributes of agents (e.g. capital, gender ratio, education) are initialized based on
weighted or normal distribution drawn on statistical distribution from survey data and other
sources.

Input data

TeleABM uses three types of input data, which also corresponds to three initialization steps.

Table 5: Input data of TeleABM

Input file Function
Parameter
setting

sending system representation
receiving system representation
number of initial farmer agents in sending system
number of initial farmer agents in receiving system
price of crops (soybean, corn, rice, cotton): if >0, static price, if<0,
use dynamic price or use telecoupling price

Bio-
physical
data

land-use maps (classified MODIS images (2005 and 2010) and
Landsat images (2000, 2006, 2011, 2016, as a verification source) of
Gannan, Heilongjiang, and PRODES data (2004-2014) of Sinop, MT)
temperature and precipitation map (empirical data, such as maps
of annual accumulated temperature above 10°C and maps of
precipitation of Heilongjiang)



maps of soil types 
maps of elevation and slope

Socio-
economic
scenario

text files contain annual price of crops
different settings of tariff 
maps of distance to urban and roads

Submodels

Ecological model. In this model (LandCell class in the receiving system), yield of crops (converted
to land cell spatial unit from per ha) is a function of fertilizer, precipitation, and temperature, based
on relationships found in literature. However, in this version, we do not include the crop yield
response to fertilizer use in the receiving system. Crop yield is a constant value using the survey
average (i.e., soybean 2,008 kg/ha, corn yield 9,597 kg/ha, and rice 8,112 kg/ha). In the sending
system, the parameterization of each crop yield is given based on experts’ opinion (Table 6). For
instance, if a cell is used as soybean-corn, the soybean yield is 3,007.2*90% kg/ha and the corn yield
is 4,120*100% kg/ha.

Table 6: Average crop yields to each land use type in Sinop, MT, Brazil

crop average yield (kg/ha) land use parameter (%)

soybean 3007.2 single soybean
soybean-corn
soybean-cotton

105
95
95

corn 4120.0 soybean-corn 100
cotton 3346.2 single cotton

soybean-cotton
105
95
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