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A B S T R A C T   

The booming development of large-scale infrastructure projects (LSIPs) facilitated by China’s Belt and Road 
Initiative (BRI) has drawn global concern regarding the scale, pace, and potential impact. Studies have largely 
focused on the geopolitical impact (i.e., politics and international relations) but less is known about social and 
environmental impact. This is in large part because consistent, high-resolution, cross-boundary social and 
environmental data at large scales are rather limited. To address the knowledge gap, this research developed a 
novel Socio-Environmental Sensing (SES) approach by synthesizing remote sensing imagery and geotagged 
Twitter data to map the socio-environmental impact of LSIPs. We demonstrated the applicability of this approach 
using two BRI flagship projects, namely, the Mombasa-Nairobi Standard Gauge Railway (SGR) in Kenya and the 
China-Pakistan Economic Corridor (CPEC) in Pakistan. Our analysis shows that both projects have led to a 
substantial loss of natural land (e.g., 3.7 % loss of vegetation in Kenya, and 23.3 % reduction of the glacier in 
Pakistan) but gains in artificial land (e.g., 4.2 % increase in cropland in Kenya, and 34.6 % expansion of built-up 
land in Pakistan). In addition, the BRI-LSIPs have largely improved local economic development, because 
nighttime light imagery revealed that regions near the BRI-LSIP sites became much brighter than other regions. 
Regarding the social aspect, we found that public sentiment toward the projects was largely positive and 
improved over time, which contradicts the prevalent pessimism to BRI-LSIPs by critics. Nevertheless, sentiment 
also presented strong spatial heterogeneity – regions around the BRI transportation hubs (usually large cities) 
most showed more positive sentiment than other regions. By spatially joining the georeferenced sentiment scores 
with environmental indicators from remote sensing, we further found that positive sentiment improved more in 
more developed regions, but only changed slightly in other regions. This study provides a novel approach to 
assess the socio-environmental impact of large-scale projects, and the findings would be useful for informing the 
implementation of future BRI projects across the globe.   

1. Introduction 

In the last decade, large-scale infrastructure projects (LSIPs, e.g., 
railways, highways, ports, pipelines, and hydropower) have proliferated 
throughout the Global South. China’s Belt and Road Initiative (BRI) is 
one especially noteworthy international finance-driving global 

development. Launched in 2013, this initiative plans to build a network 
of transportation and economic centers connecting more than 180 
countries across East Asia, Europe, and Africa. To date, China has 
pledged an estimated US$1 trillion (7.7 % of China’s GDP or 1.2 % of the 
world’s GDP) for these projects worldwide, and many more are currently 
being planned. Projects at this scale have had a significant positive 
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impact on transportation connectivity and economic development 
(Thacker et al., 2019), but there is also considerable concern regarding 
their socio-environmental impact (Ascensão et al., 2018; Isaksson and 
Kotsadam, 2018; Lechner et al., 2018; Narain et al., 2020). Earlier 
research suggests that large-scale construction can not only lead to 
substantial land-use change (e.g., deforestation, agricultural land ex-
pansions), but also can affect human livelihood and wellbeing (Forman 
et al., 2003; Karlson et al., 2014; Moran, 1993; Moran and Brondizio, 
1998). It is, therefore, crucial to understand the potential widespread 
socio-environmental impact of infrastructure projects generally, but the 
scope of large-scale infrastructure projects elevates this importance as 
even individual projects have the potential to impact many more people 
and ecosystems. 

In recognition of this heightened potential, considerable scholarly 
attention has been devoted to understanding the socio-environmental 
impact of major infrastructure projects, especially the BRI-LSIPs. How-
ever, the existing studies largely considered either the environmental 
aspect or the social aspect. Moreover, studies on environmental impact 
mostly focused on predicting potential impact rather than assessing the 
factual impact, which is essential for informed planning and decision- 
making. For example, some work predicted possible increases in en-
ergy consumption and pollution, enlarged carbon footprints, and 
encroachment on wildlife habitats (Hughes, 2019; Teo et al., 2019; 
WWF, 2017), but little is known about how LISPs have actually altered 
environmental conditions. For studies on the social aspect, rich litera-
ture explored the political and economic implications at the macro-level 
(Du and Zhang, 2018; Saud et al., 2019; Zhai, 2018), but perspectives 
from the local communities have been largely ignored. Incorporating the 
perspectives of local communities is crucial as these communities are the 
ones who were affected directly. In an endeavor to address this, some 
conducted fieldwork (e.g., interview and survey) to gather such data 
(Blair and Roessler, 2018). But these traditional methods are usually 
costly and time-consuming, which limit the research scope to small and 
local scales (Boonwattanopas, 2015; García-Herrero and Xu, 2019; 
Wissenbach and Wang, 2017), making them underrepresented and 
insufficiently positioned to speak to the international, national, and 

regional concerns. In short, existing studies are limited in two primary 
ways: most either (1) adopt a risk assessment perspective where they 
focus on the potential harm rather than investigating actual 
socio-environmental impact, or (2) fail to consider both aspects of social 
and environmental impact despite increasingly forceful calls for such 
analyses (Liu et al., 2007; Ostrom, 2009). In particular, the World Bank 
and the International Union for Conservation of Nature (IUCN) have 
recently called for Strategic Environmental and Social Assessments 
(SESAs) of BRI-LSIPs specifically to address this knowledge gap 
(Ascensão et al., 2018). 

To advance the understanding of socio-environmental impact at 
large spatial scales and inform policy, this study proposes to integrate 
broadly available social media data and environmental remote sensing 
data to investigate the social and environmental impact of BRI-LSIPs 
(Fig. 1). These two data sources complement each other and provide 
more comprehensive indicators for both environmental and social as-
pects. Long-term, global remote sensing data have proven powerful for 
monitoring environmental changes on the Earth’s surface. For example, 
Landsat images are used to detect land-use change (Linderman et al., 
2005), while nighttime light images serve as indicators of socioeco-
nomic change (Wulder et al., 2019). Similarly, social media data (e.g., 
Twitter) provides rich individual-level information (e.g., user-generated 
images, text, and videos). This kind of data is increasingly used to 
analyze the public sentiment in a variety of contexts (Arthur et al., 2018; 
Di Minin et al., 2019; Liu et al., 2015; Moore et al., 2019). Although both 
provide important contributions, environmental remote sensing and 
social sensing are often applied separately for different research pur-
poses. To date, they have rarely been considered together within the 
same research effort to understand the socio-environmental impact of 
large-scale infrastructure development efforts. 

In this paper, we first illustrated the novel Socio-Environmental 
Sensing (SES) approach that integrates remote sensing and social 
sensing. Then, we exemplified the approach by taking two BRI flagship 
projects – the Mombasa-Nairobi Standard Gauge Railway (SGR) projects 
in Kenya and the China-Pakistan Economic Corridor (CPEC) in Pakistan 
– as representative cases (see Geographic foci in Section 2.2). We aimed 

Fig. 1. The workflow of Socio-Environmental Sensing for impact assessment and LSIP sustainable development and planning.  
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to address three research questions. First, how did landscapes change 
with the development of BRI-LSIPs? Previous research focused on forest 
loss (BenYishay et al., 2016), but it is still not clear how other types of 
land use/land cover have changed. For instance, farmland expansion 
and rapid urbanization are very likely to happen in these developing 
countries under population growth and increasing globalization (Bron-
dízio and Moran, 2012; Liu et al., 2020). Second, how did the general 
public perceive the BRI-LSIPs, and how did their sentiment change over 
time? Many environmental non-governmental organizations (NGOs), 
conservationists, journalists, and scholars criticized the nature, pace, 
and scale of China’s overseas projects (BenYishay et al., 2016; Blair and 
Roessler, 2018; Laurance et al., 2015), but it would be more important to 
know how the general public and local community perceived those 
projects as they are the ones who experienced the actual impact. Lastly, 
is the public sentiment change associated with environmental change? 
We synthesized results from remote sensing and social sensing and hy-
pothesize that there might be strong negative sentiment towards natural 
land loss. This study contributes to human-environment literature by 
providing a novel SES approach to enable socio-environment impact 
assessment to a large spatial extent. The findings provide valuable in-
formation for the planning, implementation, and monitoring of similar 
large-scale infrastructure projects globally. 

2. Materials and methods 

2.1. Socio-environmental sensing 

The Socio-Environmental Sensing (SES) approach is a key extension 
of the People and Pixels foundation (National Research Council, 1998), 
which connects remotely sensed data and georeferenced social science 
data to advance empirical and theoretical understanding of 
human-environment interactions (Kugler et al., 2019). Remotely sensed 
satellite data have been widely applied in environmental monitoring, 
while the individual-level geotagged social media data is an emerging 
data source for capturing collective human behavior and 
individual-level sentiments (Di Minin et al., 2019; Liu et al., 2015). 
Adopting social and remote sensing data simultaneously provides a new 
way to investigate changes in complex socio-environmental systems and 
inform policymaking in a timely manner. Both data sources can be easily 
queried from databases at very low or no cost (Hasan et al., 2017). 
Remote sensing images at high spatial resolution (e.g., 10-m or 30-m) 
can be accessed weekly or biweekly, and social media data can be 
collected in real-time. These enable us to investigate the long-term 
environmental changes with detailed information and capture senti-
ment changes with social sensing technologies across a large region. 
Here, we took a commonly used Before-After (also called Pre-Post test) 
analysis to evaluate the impact (Christie et al., 2020) given there were 
few other projects at this large scale in the region. Each LSIP is divided 
into two stages: “before” the project implementation, and “after” the 
project was completed (See Table A.1 for the detailed timeline of each 
project). Referring to previous studies (Benítez-López et al., 2010; 
Isaksson and Kotsadam, 2018; Ng et al., 2020), we chose 50 km as the 
threshold distance to determine the project impact zone. Our SES 
approach builds on and advances previous studies by integrating 
emerging big data sources and novel tools (e.g., artificial intelligence, 
cloud computing) to enable human-environment research at a large 
spatial scale. In the following sections, we detail each sensing approach 
and how they complement each other for a more comprehensive impact 
assessment. 

2.1.1. Environmental sensing 
Remote sensing and its associated cloud computing technologies 

provide powerful datasets and tools to capture the landscape and envi-
ronmental change over considerable time and space – a substantial 
advance to traditional field observation-based environmental research 
(Gorelick et al., 2017). For example, more than 46 years of Landsat 

imagery archive has enabled long-term global forest monitoring (Han-
sen et al., 2013), crop yield estimation (Huang et al., 2015), surface 
water mapping (Pekel et al., 2016), surface temperature estimation (Li 
et al., 2013), and more (Wulder et al., 2019). Similarly, Google Earth 
Engine’s cloud-computing platform makes remote sensing more efficient 
in detecting and quantifying changes at large spatial scales (Gorelick 
et al., 2017). In this study, we focused on investigating changes in land 
use and nighttime light. This is because land-use change is often the 
most direct consequence of large-scale development (Brown et al., 2007; 
Lambin et al., 2001; Liu et al., 2010), and nighttime light brightness 
often is used as an indicator of economic growth and social-economic 
activity (Chen and Nordhaus, 2019; Wu et al., 2013). 

2.1.2. Social sensing 
Large-scale development can have a substantial impact on local 

communities. For some, infrastructure development projects create jobs 
and make transportation more convenient. For others, these projects 
invade protected areas and impact sacred landmarks (Giddens, 2013). 
These impacts can unfold over the course of the project as intended 
actions become unfeasible or unintended consequences become clear 
(Cohen et al., 2014; Jiang et al., 2016). Capturing this change tradi-
tionally relies on participatory mapping or questionnaire-based surveys. 
These approaches are useful for studies at the local scale but are limited 
for research at large spatial extents. The recent rapid development of 
social media platforms and Application Programming Interfaces (API) 
offers a more accessible and abundant data source over large spatial 
extents to fill the data gap (Bing et al., 2014). Social media platforms 
such as Twitter allow individual voices to be heard in an unprecedented 
way, bypassing news media which traditionally acts as the primary 
gatekeeper for the spread of the information (Bing et al., 2014; Seki, 
2016; Tan et al., 2014; Vos, 2019). Put another way, Twitter allows for 
relatively unfiltered opinions to be expressed. Extensive studies show 
how individuals are more willing to give their honest opinion through 
online platforms, sharing feelings they would not share face-to-face or 
through a record associated with their name (e.g., some interviews and 
questionnaire-based surveys) (Black et al., 2016; Correa et al., 2015; 
Jones et al., 2020). As Twitter’s prompt to post (i.e., “What’s 
happening?”) indicates, social media provides a temporally- and 
spatially-explicit rich mix of news and reactions, thus allowing for the 
efficient study of trends in public sentiment on a larger scale than was 
previously possible (Rajadesingan and Liu, 2014; Tavoschi et al., 2020). 

In this study, we only used Twitter data because it is the only 
available and accessible data source that offers fine-scale spatial infor-
mation (Arthur et al., 2018; Cai, 2021; Fu et al., 2018). Although in-
formation from local news and other media outlets is valuable, they 
mostly do not have specific spatial location information (only a few can 
be geocoded to a city or state level). Besides, opinions and attitudes in 
news reports are largely determined by the journalists, and even worse 
censored by the government or certain political parties. While a few 
Twitter accounts are run by governments and newspaper offices, a vast 
majority are owned by individuals. The advantage of using Twitter data 
is that we can collect diverse “voices” from a large body of individuals 
and use those data to identify the “emerging” pattern (Cai, 2021; Tan 
et al., 2014). Sentiment information derived from tweets might be 
sometimes less accurate than that from a well-designed survey, but as far 
as we know, Twitter is by far the most feasible data source we can use to 
estimate human sentiment and behaviors at a large spatial scale. In 
addition, Twitter data have been proven efficient in analyzing public 
sentiments to climate change (Moore et al., 2019), wildlife conservation 
(Di Minin et al., 2019), cultural ecosystem services (Johnson et al., 
2019), urban planning (Cai, 2021), and disasters (Arthur et al., 2018). 

2.1.3. Integrating environmental and social sensing analysis 
Although remote sensing and social sensing data are useful on their 

own, integrating these two can provide us with complementary infor-
mation to more comprehensively understand both the social and 
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environmental impact of BRI-LSIPs and as well as their linkages. 
In this study, after evaluating the environmental and social impact 

respectively (see details in Section 2.3), we then took information from 
the data layers of two sensing analyses and ran a regression analyses to 
test if public sentiment change was associated with environmental 
landscape change and socioeconomic change (Fig. 1). Specifically, we 
extracted evenly distributed points from the data layers of landscape 
naturalness (see details in Section 2.3.1), nighttime light brightness, and 
sentiment based on a 10 km x 10 km grid. Within the same grid unit, we 
assume the corresponding sentiment change could be observed if the 
grid area experienced environmental change (e.g., deforestation because 
of infrastructure development). In total, 4735 points were obtained for 
Kenya and 8193 points for Pakistan. 

Overall, by linking environmental remote sensing and social sensing 
data, we aimed to provide a feasible way to narrow the gap in efficiently 
assessing the socio-environmental impact of LSIPs (Fig. 1). 

2.2. Geographic foci 

This study seeks to shed light on the impact of BRI-LSIPs through an 
investigation of the Mombasa-Nairobi Standard Gauge Railway (SGR) in 
Kenya, and the China-Pakistan Economic Corridor (CPEC) highway 
system in Pakistan. We selected these two projects for a few reasons. 
First, these two projects generally are representative of BRI-LSIPs in 
terms of their large spatial scale/coverage, geography, level of invest-
ment, and widespread media coverage (Laurance et al., 2014). There are 
also noteworthy concerns regarding the impacts of both projects given 
their overlap with environmentally important or ecologically fragile 
regions (WWF, 2017). Additionally, we selected transportation projects 
specifically because they account for over 60 % of all BRI-LSIPs that are 
currently planned (around 6200 projects; Fig. A.1) (AIDDATA, 2020; 
Strange et al., 2017). We chose projects in two continents to facilitate a 
multinational analysis (Carlson and Harris, 2020; Hu, 2018; Janowicz 
et al., 2012). Finally, we selected these sites because of the relatively 
strong availability of English-language Twitter posts (text in a common 
language is important for the analyses) and high-quality remote sensing 
data in those regions. 

2.2.1. The mombasa-nairobi standard gauge railway 
The Mombasa–Nairobi Standard Gauge Railway (SGR) is a flagship 

BRI project in East Africa. To date, it is the most expensive infrastructure 
project in Kenya’s history, with a total cost of US$3.6 billion. The SGR is 
one of the earliest completed projects under the BRI with construction 
formally starting in December of 2015, passenger services opening in 
May of 2017, and freight rail services opening in January of 2018. The 
railway has greatly reduced the transportation cost between Mombasa 
and Nairobi, and facilitated regional tourism and other related busi-
nesses. Despite these benefits, concerns have been raised regarding 
increased national debt (Githaiga and Bing, 2019). Additionally, the 
SGR railway traverses several important ecological areas (e.g., Tsavo 
National Park, Nairobi National Park, Mombasa Mangrove Wetland 
Park) and there is concern that the project may offset previous conser-
vation efforts or even aggravate environmental degradation (Kenneth 
and Zhao, 2020). 

2.2.2. The China-Pakistan economic corridor 
The China-Pakistan Economic Corridor (CPEC) is a flagship project 

of the BRI. CPEC was launched in April 2015 to upgrade Pakistan’s 
transportation infrastructure, for which China has allocated financing 
for US$10.63 billion. Three primary corridors have been identified: (1) 
the Eastern Alignment through the heavily populated provinces of Sindh 
and Punjab, where most industries are located; (2) the Western Align-
ment through the less developed and more sparsely populated provinces 
of Khyber Pakhtunkhwa and Baluchistan; and (3) the future Central 
Alignment that will pass through Khyber Pakhtunkhwa, Punjab, and 
Baluchistan (Abid and Ashfaq, 2015). Most of these highway projects 

started in early 2016 and were completed in the second half of 2019 (see 
Table A.1 for the detailed timeline of each project). Together they have 
promoted regional economic development and interregional trade, but 
also brought considerable environmental concerns (e.g., loss of natural 
vegetation, increased glacial melting in the northern Pakistan region) 
(Kanwal et al., 2019). 

2.3. Data collection and analysis 

2.3.1. Environmental sensing data collection and analysis 
We used freely available, high-resolution global land cover products 

derived from remote sensing imagery to investigate land-use change due 
to BRI-LSIP developments. GlobeLand30 – the 30-meter resolution 
global land cover data product for 2010 and 2020 – was used to analyze 
the land cover and land-use changes in Kenya and Pakistan. Globe-
Land30 includes land cover classes such as cultivated land, forest, 
grassland, shrubland, wetland, water bodies, tundra, artificial surface, 
and bare land (Jun et al., 2014). This product has high-resolution, global 
coverage, and is constantly updated. The total accuracy of GlobeLand30 
2010, as based on the validation of over 150,000 points in 80 of the total 
853 tiles, is 83.50 % and the Kappa coefficient is 0.78. The total accuracy 
of GlobeLand30, 2020 is 85.72 % and the Kappa coefficient is 0.82 
(GlobeLand30, 2020). Due to the data availability, we used the data in 
2010 for estimating land cover “before projects” (i.e., in 2013), and 
2020 for “after projects” (i.e., in 2019). This approximation may be a 
limitation but is widely used in other studies with the assumption that 
the changes in land use within adjacent years are usually small (Li et al., 
2017; Liu et al., 2014). In addition, based on different land cover types 
from the GlobeLand30, we created a land cover naturalness index for 
later quantitative analysis (Machado, 2004). The index ranges from 0 to 
100 percent, including different values for the 11 land-cover types. The 
more “natural” the land-cover type is, the higher the value. Here, we 
assigned 100 % to forest, shrubland, grassland, wetland, tundra, and 
snow/ice; 75 % to water; 50 % to agricultural land; 25 % to bare land; 
and 0 % to artificial land. We further categorized three naturalness 
levels: low (< 25 %), moderate (25 % ~ 50 %), and high (> 50 %). 

To address economic changes, we used the NASA Visible Infrared 
Imaging Radiometer Suite (VIIRS) nighttime light images at 15 arc 
seconds from 2014 to 2019 (https://viirsland.gsfc.nasa.gov/). Night-
time light imagery can approximate socioeconomic indicators (popula-
tion and human activities) and is especially useful for areas that lack 
sufficient socioeconomic data (Elvidge et al., 2017; Yang et al., 2019). 
Similar to naturalness, we categorized the VIIRS nighttime light images 
to three brightness levels (in radiance units of nano-Watts/cm2/sr) for 
analysis: low (0 ~ 2), moderate (2 ~ 5), and high (> 5) (Levin and 
Zhang, 2017). 

2.3.2. Social sensing data collection and analysis 
This study used social media data to understand public sentiment 

towards the BRI-LSIPs. We chose Twitter because it is the social media 
platform with the broadest country user coverage (with 330 million 
users active monthly). Recent advanced artificial intelligence methods 
(e.g., text mining and sentiment analysis) provide ready-to-use packages 
for detecting topics and human sentiments from text information (Bing 
et al., 2014; Cai, 2021). In this study, a dictionary-based sentiment 
analysis R package (sentimentr) (Rinker, 2018) was applied to investigate 
public sentiment towards the project (see details in Appendix A). 
Additionally, we used the opinion mining method from Microsoft 
Azure’s Cognitive Services to further locate the subject and the corre-
sponding sentiment in a tweet (https://docs.microsoft.com/en-us/a 
zure/cognitive-services/text-analytics/). For example, if a tweet says, 
"The railway is great, but the environmental impact is worrisome.", 
opinion mining will return the mapping relationship like “positive” 
sentiment to “railway”, and “negative” sentiment to “environmental 
impact”. 

Twitter’s Application Programming Interface (API) was used to 
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extract the historical tweets from its full archive. As the BRI was formally 
initiated in September of 2013 when Chinese President Xi visited 
Pakistan, we filtered and requested Tweets posted between September 
2013 and December 2019. We requested all tweets containing one of a 
list of keywords or hashtags (here we followed Twitter API searching 
rules and filtering guide, including Boolean operators, truncation, and 
wildcard): ‘#bri OR #obor OR #silkroad OR beltandroad OR beltan-
droadinitiative OR beltroad OR "belt road" OR "silk road" OR onebeltoneroad 
OR "belt and road" OR ("one belt" "one road")’ (see detailed explanation in 
Supplementary Methods in Appendix A). For each specific project, we 
further reviewed local news media posts and a sample of tweets to 
identify additional search terms for each country. For Kenya, we added 
‘(China OR Chinese OR Beijing) (rail OR highway OR road OR train OR 
infrastructure) (SGR OR "standard gauge") place_country:KE’ (see detailed 
explanation in Supplementary Methods in Appendix A). For Pakistan, 
we added ‘(China OR Chinese OR Beijing) (rail OR highway OR road OR 
train OR infrastructure) ("Economic Corridor" OR CPEC) place_country:PK’ 
to the general BRI search terms. The final dataset is the set of geotagged 
tweets between September 1, 2013, and the end of December 2019 (330 
weeks, or 2313 days). The tweets, therefore, covered the periods before, 
during, and after the construction of both project cases in this study. The 
data include anonymous user profile information like fuzzy location and 
social identity, tweet locations and timestamps, and comments/replies 
in addition to the tweet content itself. Around 1.6 million tweets from 
around 0.4 million unique users were collected (replies and retweets are 
not included). Unnecessary symbols and noise, such as weblinks, men-
tions, punctuations, stop words (usually refers to the most common 
words in a language that have relational rather than content meaning, 
such as “a”, “the” and “is”), were removed from the tweet texts before 
sentiment analysis and opinion mining (Cielen et al., 2016). Sentiment 
analysis was validated by manually screening 1000 tweets (Moore and 
Obradovich, 2020). 

3. Results 

3.1. Land use and land cover change 

Infrastructure development through the BRI has resulted in consid-
erable natural land loss and artificial land increases in both Kenya and 
Pakistan (Fig. 2). These changes are also reflected in the nighttime light 
images. We found human activities along the transportation 

infrastructure networks increased substantially after the projects, and 
regions close to the newly built railways and highways presented much 
brighter nighttime light than other regions (Fig. A2). These brighter 
regions in the satellite images presented a mostly linear pattern and 
aligned with the new transportation network obtained from the Open-
StreetMap (https://www.openstreetmap.org/). 

In Kenya, there was a net loss of forest within the project impact 
zone, but a large net increase outside the zone. Although the project 
impact zone only accounts for 22.3 % of the total land area of Kenya, the 
increase of agricultural land accounts for 62.0 % of the country’s total 
increase. Specifically, land cover within the 50 km buffer zone of the 
Mombasa–Nairobi Standard Gauge Railway showed an increase in 
artificial land (by 13.7 %), agricultural land (by 4.2 %), and water (by 
6.9 %) at the expense of wetland (by 12.2 %), shrubland (by 6.7 %), 
grassland (by 3.5 %), bare land (by 5.7 %), and forest (by 3.2 %) during 
2010 and 2020 (Table A.2, Fig. 3A). In addition to a relatively large 
increase in artificial land because of the infrastructure development, 
there is a larger increase in agricultural land near the railway (Fig. 3C 
and D). The increase in artificial land and agricultural land was mainly 
due to transfer from natural lands, such as grassland, forest, and shrub 
(Fig. 3B; Table A3). 

For Pakistan, land within the project impact zone has undergone 
much larger changes than regions without such projects, with over 65 % 
reduction in wetland, forest, agricultural land, shrubland, and grassland, 
and more than 80 % increases in artificial land and water bodies (Fig. 2). 
Specifically, the land cover within the 50 km buffer zone around the 
CPEC transportation networks showed an increase of artificial land (by 
34.6 %), water (by 44.4 %), and wetland (by 6.6 %), mainly at the 
expense of snow/ice (by 23.3 %), shrubland (by 3.9 %), grassland (by 
2.3 %), forest (by 1.0 %) (Table A4). Unlike Kenya, we found there was a 
much larger increase in artificial land and water bodies, and an alarming 
decrease (>20 %) in glaciers (snow and ice) in Pakistan (Fig. 4A). The 
increases in both water bodies and wetland were due to the land transfer 
from agricultural land, grassland, and bare land (Fig. 4 B and Table A5). 

3.2. Sentiment change 

3.2.1. Average sentiment towards the BRI-LSIPs 
Of the 1.58 million Tweets collected from 415,770 unique users, 

9,426 were attributed to Kenya, and 26,655 were attributed to Pakistan. 
Surprisingly, we found most of the public were more concerned about 

Fig. 2. Land area changes in each type (A. Kenya. B. Pakistan). Bars with darker color represents land cover change within the project impact zone, while bars with 
light color represent land-use change outside the zone. The percentage annotations show the percentage of change inside the impact zone to the total change in the 
country. Note, only percentages larger than 15 % are annotated in the figures. 
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social and economic issues (e.g., “corruption”, “debt”, and “coopera-
tion”) than the environment (see details in Section 3.3). In Kenya, the 
most common keyword in tweets is “sgr” (Fig. A2). Most of the negative 
sentiment is related to “corruption”, “debt”, and “scandal”, while posi-
tive sentiment is linked to “good” benefits of the “road” (Fig. 5A). In 
Pakistan, the keyword most used is “cpec” (Fig. A2). Similar to Kenya, 
Pakistan’s negative sentiment is also tied with “corruption” and “debt” 
(Fig. 5B); but unlike Kenya, another common negative sentiment is 
related to “India” (Fig. 5B). The positive sentiment in Pakistan focuses 
on the “cooperation” and “opportunity” by the “bri” and “road” 
(Fig. 5B). 

In both Kenya and Pakistan, the local community’s sentiment to-
wards BRI-LSIPs (measured as sentiment score) was mostly positive 
between 2013 and 2019 (Fig. 6). In Kenya, 60 of the 75 months evalu-
ated had majority positive sentiments (80.0 %), while 15 months had 
majority negative sentiments (20.0 %) and the strongest negative 
sentiment occurred before the SGR construction (Fig. 6). In Pakistan, 72 

of the 76 months measured had majority positive sentiments (94.7 %), 
while only 4 months had majority negative sentiments (5.3 %) and the 
strongest negative sentiment emerged before the CPEC as well (Fig. 6). 
The mean sentiment score in Kenya was +0.03, while the mean senti-
ment score in Pakistan was +0.12 (Fig. 6). 

3.2.2. Spatial-temporal change of sentiment change 
Although the sentiment towards BRI-LSIPs in both Kenya and 

Pakistan became more positive over time (Fig. 6), it varied largely across 
space (Fig. 7). Within Kenya, positive sentiments increased primarily in 
the southern half of the country (e.g., the Coast Province), as well as part 
of the central portions (e.g., Central Province) (Fig. 7A). These two re-
gions also have the country’s largest city (i.e., Mombasa) and the na-
tional capital city (i.e., Nairobi), which are connected by the new SGR. 
Negative sentiments emerged and became worse in the northwest (e.g., 
northern Rift Valley county) and east of the Central Province of the 
country after the projects were completed. 

Fig. 3. Land cover change in Kenya. Net land cover changes after the project (A); Land cover change across all types (B) (The arc length of an outer circle indicates 
the sum of transfer-out and transfer-in in each land cover type. Ribbon colors suggest the land cover type being converted to other types); Zoom in to the land cover 
map in Samburu and Mombasa regions in 2010 (C) and in 2020 (D) (large increase in cropland and roads. C and D share the same color scheme with B). Land cover 
map credit: http://www.globallandcover.com/. 
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A similar city-hub-dependent sentiment change was seen in Pakistan 
(Fig. 7B). Positive sentiment increased primarily in regions around the 
large cities, such as the southwestern region with Karachi (the largest 
city), the eastern region with Lahore (the second largest city), and the 
northern region with Islamabad (the national capital). Sentiment score 
decreased mostly in the northern parts of the country (i.e., the Gil-
git–Baltistan region), which is regarded as a conflict zone at the junction 
of the three countries – Pakistan, India, and China. Infrastructure pro-
jects in such regions might require additional funding and efforts to ease 
social tensions and environmental challenges (Hughes et al., 2020). 

3.3. Linkage between sentiment changes and environment changes 

Three main environment-related subjects – “environment”, “land”, 
and “water” – in tweets were identified by using opinion analysis. 
Although it is not statistically significant, we observed that sentiments to 
these three subjects were generally negative before implementing the 

BRI projects, but became more positive after completing the projects in 
both countries (Fig. 8). This indicates that from the local perspectives, 
the BRI projects did not cause as many environmental concerns as 
envisioned at the beginning. However, it does not mean the BRI projects 
caused no negative environmental impact at all. A small portion of 
tweets did express concerns on the environmental impact, and the 
perception also varied across people from different regions within the 
country. For example, some worried about the negative impact on the 
Nairobi National Park because the SGR is passing the park; others 
warned of the alarming trend of glacier melting in Pakistan because of 
railway construction. 

The relationship between sentiment changes and landscape changes 
was subtle for both projects. Other complex confounding factors, such as 
level of development and affluence, may also play a role in influencing 
human sentiment. Interestingly, we found that sentiment change has a 
negative relationship with landscape naturalness change in Kenya, while 
the relationship is positive in Pakistan (Fig. 9). Furthermore, we found 

Fig. 4. Land cover change in Pakistan. Net land cover changes after the project (A); Land use change across all types (B) (The arc length of an outer circle indicates 
the sum of transfer-out and transfer-in in each land cover type. Ribbon colors suggest the land cover type being transferred out to other types); Zoom in to the land 
cover map in Multan and Bahawalpur regions in 2010 (C) and in 2020 (D) (visually observed increases in artificial land and water bodies. C and D share the same 
color scheme with B). Land cover map credit: http://www.globallandcover.com/. 

Y. Li et al.                                                                                                                                                                                                                                        

http://www.globallandcover.com/


Environmental Science and Policy 124 (2021) 527–540

534

that in both Kenya and Pakistan, people in the low naturalness region 
presented more positive sentiment after the BRI projects, while people in 
the high naturalness region shown more negative sentiment after the 
BRI projects (Fig. A.11). This implies people in the more urbanized re-
gion tended to have more positive sentiment to the projects, while 
people in the more rural region tended to have more negative senti-
ments. The positive relationship between sentiment score and nighttime 
light brightness further strengthens this argument, as nighttime lights 
are often used as proxies for population and economic affluence (Chen 

and Nordhaus, 2019; Proville et al., 2017). More importantly, we found 
that positive sentiment increased most in the brightest regions (i.e., 
more prosperous regions) after the projects were completed, but senti-
ment only changed slightly in less bright regions (Fig. A.11). This spatial 
heterogeneity is substantively important for understanding the rela-
tionship between sentiment change and environmental change, even 
though results from a regression analysis do not show statistical 
significance. 

Fig. 5. Sentiments towards key topics of BRI projects in Kenya (A) and Pakistan (B). The word clouds only include the top frequent 100 words (large word size 
indicates high frequency). 

Fig. 6. Sentiments change over time (by month) with annotation of major events. See Table A.1 for the full name of each event.  
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4. Conclusion and discussion 

This research developed and applied the novel Socio-Environmental 
Sensing (SES) approach to assess the environmental and social impact of 
large-scale infrastructure projects development in the Global South. This 
approach narrowed the data gaps in assessing socio-environmental 
impact at large spatial scales. We investigated two representative 
LSIPs (i.e., SGR in Kenya and CPEC in Pakistan) that were facilitated by 
the Belt and Road Initiative. We found both projects led to substantial 
land use and land cover changes, mainly reflecting on natural land loss 
and artificial land gains. Nighttime light imagery also confirmed this 
change and revealed that regions near the project sites became brighter 
than regions without such projects. This implies BRI-LSIPs have largely 
improved local economic development. In addition, our social sensing 
analysis found that the sentiment of local communities towards the BRI- 
LSIPs became more positive throughout the projects, which contradicts 

the prevalent pessimism by critics. Our integrated analysis found that 
there were fewer sentiments to environment impact than socioeco-
nomic, and the relationship between sentiment and environment was 
not as strong as expected because of spatial heterogeneity across nation 
and region. 

4.1. Unexpected landscape change and the potential impact 

The two projects had a tremendous direct environmental impact on 
each country’s landscape and economic development. Both Kenya and 
Pakistan experienced natural land loss and increases in artificial lands 
coinciding with increased human activities along with the project sites. 
Various natural lands were lost during the construction process for both 
countries. Specifically, Kenya lost a large amount of grassland, forest, 
and shrubland, in favor of increases in construction, agriculture, and 
water bodies. Pakistan lost even more (semi)natural lands, such as 

Fig. 7. Map of sentiment change regarding the BRI LSIPs in Kenya (A) and Pakistan (B).  

Fig. 8. Sentiment changes to main environment-related subjects in tweets.  
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snow/ice, grassland, shrubland, forest, and agricultural land. These land 
types were primarily replaced by artificial land and water bodies. 

It is worth noting that transportation construction can not only spur 
artificial land use but also propel agricultural activities along with the 
transportation network. Our analysis found there is a surge in agricul-
tural land in southern Kenya (Fig. 3). This change might attribute to the 
convenient transportation that enables interregional food trade and 
promotes agricultural activities in the region. In addition, we surpris-
ingly found an enormous amount of water body and wetland growth in 
Pakistan, while the snow and ice retreated (Fig. A.6). This finding is 
consistent with the warning from geologists who highlighted the po-
tential for glacier melting in the upstream Indus River and the increase 
in High Asia’s runoff (Lutz et al., 2014; Rathore et al., 2018). This 
arouses another layer of concern that human construction may com-
pound the climate change effect and catalyze the glacial melting in the 
Himalayan region. The consequent impact on local ecosystems and 
beyond remains unknown and could be devastating (Kehrwald et al., 
2008; Veh et al., 2020). Our findings thus suggest future LSIPs and road 
ecology studies should pay special attention to the usually ignored 
broader environmental impact of transportation (e.g., agricultural 
expansion, habitat fragmentation, and ecosystem degradation), in 
addition to the local effects (e.g., local land use transfer, and local air 
quality). 

4.2. Sentiment trends 

Although many negative comments on the BRI itself and BRI 
financed LSIPs in the news media, we found the overall sentiments in 
both Kenya and Pakistan were generally positive throughout the 
development process (Fig. 6). One potential explanation is the socio-
economic benefits that come with such large-scale infrastructure pro-
jects (Thacker et al., 2019). Looking at the sentiment change over time 
by country, we identified a spike in positive sentiment before the project 
(when the project was under planning), and then there appeared to be 
more negative sentiment when approaching the actual launching of the 
project (Fig. 6). This can be confirmed with the fact that several LSIPs 
financed by the BRI were either suspended or terminated prior to the 
project implementation because of conflicting interests or opposition by 
different stakeholders. Future project planning should especially pay 
attention to these potential obstacles and impacts before implementing. 

In terms of the spatial variation in sentiment within countries, we 
find parallels between locations. In Kenya, positive sentiment tended to 
be higher in the southern portion of the country where the Mombasa- 
Nairobi Standard Gauge Railway is located. While a similar pattern 

can be seen with the China-Pakistan Economic Corridor construction, 
we also found most of the regions that experienced LSIPs showed posi-
tive sentiment, though with a mix of few negative sentiments along the 
territory border in Pakistan. This indicates people in Pakistan tended to 
have positive sentiment towards the LSIPs overall, but concerned about 
geopolitical relations. Our keyword analysis confirmed this, as “India” is 
among the most frequently mentioned keywords on Twitter in Pakistan. 
This makes sense when placed in context with the conflicting interests 
among Pakistan, India, and China. It was reported that several CPEC 
projects are set to be conducted near disputed territory in the Himalayan 
Mountains near the Indian Ocean (Verma, 2020). 

When looking at these country-wide sentiments, it is important to 
note the spatial heterogeneity of population centers. A higher concen-
tration of sentiment data is found in higher population areas (Figs. A.7 
and A.8), while a lower concentration of sentiment data was in low- 
population areas. This makes sense as these populous areas are often 
relative wealthy cities, while low-population areas are often less- 
affluent rural regions (where the residents may not have access to mo-
bile devices or have limited usage of Twitter app). One way to gather 
more sentiment data from a greater portion of the population would be 
to incorporate other social media data sources (such as Facebook and 
Instagram) or multimedia news to expand the sample size (e.g., the 
Global Database of Events, Language, and Tone Project [aka, GDELT], 
which collects the world’s broadcast, print, and web news from nearly 
every corner of every country; https://www.gdeltproject.org/). How-
ever, it has been extremely challenging to obtain Facebook data since its 
API changes in 2018, and cleaning the GDELT mixed text data is 
complicated. Our sentiment analysis using Twitter data, although with a 
potential data gap in less developed regions within a country, can help 
provide a timely sense of how local response to such large-scale infra-
structure development across a country. 

4.3. Complex socio-environmental interactions 

Social-environmental impact and their interactions across scales and 
locations are complex, and depicting the complexity is challenging but 
beneficial. For example, Kenya has a negative relationship between 
sentiment and landscape naturalness, while Pakistan has a positive one. 
However, both countries share the common trend of positive relation-
ships between sentiment and nighttime light brightness (an indicator of 
economic growth). According to the World Bank data, Pakistan’s GDP 
per capita PPP (i.e., purchasing power parity) ($4,690 in 2019) is 
slightly higher than Kenya’s ($4,330 in 2019). What we found from this 
study might be relevant to the Environmental Kuznets Curve (EKC) held 

Fig. 9. Sentiment changes vs. naturalness changes. A - Kenya, B - Pakistan.  
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by neoliberal economics, maintaining that poorer people and poorer 
governments would not care about the environment until after a certain 
economic threshold is reached (Broad and Cavanagh, 2015; Grossman 
and Krueger, 1995). Although it is challenging to draw a universal 
conclusion on the relations across countries, it otherwise informs us that 
the assessment of environmental and social impact should be 
country-wide, and that decision-making should be context-specific. 
Future research should include more BRI countries to test the EKC 
hypothesis. 

Of note, our analysis revealed that positive sentiment increased most 
in regions with less natural land and brighter nighttime light, but only 
changed slightly in other regions with high naturalness land. Generally, 
areas with high naturalness land are considered as the rural, remote, and 
often poor regions in developing countries. Our findings thus suggest 
LSIPs may benefit developed regions more than less developed regions. 
Therefore, how to support the poor population and address the 
inequality in development should be put into the agenda of future LSIPs 
planning and implementation. 

The integrated analysis of environmental and social impact can 
provide better information for future policymaking, catering to both 
environmental and social considerations. By doing so, potential syn-
ergies and trade-offs of policy impact could achieve the optimization of 
policy effectiveness and minimize unnecessary cost. For example, less 
developed regions could benefit from well-planned infrastructure 
development and thus become prosperous. Incorporating social devel-
opment consideration into the planning of infrastructure development 
could be applauded by most stakeholders with an overall positive 
sentiment in the area. On the other hand, a large trade-off between 
environmental and social impact would alert decision-makers in 
implementing policies with careful consideration. With a better under-
standing of the strengths and drawbacks of implementing a project, 
decision-making would be more robust and engaged with more different 
stakeholders. 

4.4. Study limitations 

While social media provides a channel for a diverse population to 
provide individual sentiment expression, due to the various 
socioeconomic-cultural status in the study regions, people in part of the 
study regions may not use social media or may not speak English. This 
may lead to biased estimates in our sentiment analysis. Thus, some 
countries or regions with less sufficient social media data may face 
challenges in applying the SES approach. 

Future research needs to combine more diverse social media data 
sources and community engagement scholarship to fully understand the 
social impact of LSIPs financed by international agencies. To the best of 
our knowledge, the broad coverage and substantial user group of Twitter 
throughout the world provide us with the most comprehensive 
individual-level data samples by far, and such information thus can help 
us capture the best estimate of people’s sentiment and the change over 
time and across space. Additionally, although language differences 
across countries might add difficulty to generalize this approach, recent 
rapid developments in machine learning techniques are more capable of 
addressing this by translating text in different languages into a desig-
nated language (e.g., English) for sentiment analysis. 

In all, this SES approach fosters timely and prompt socioeconomic- 
environmental monitoring across scales with fine resolutions by inte-
grating social media data and remote sensing data. The findings will also 
help stakeholders be aware of the potential socio-environmental impact 
of implementing large-scale infrastructure projects and facilitate sus-
tainable infrastructure development. 

4.5. Future research and implications 

Future research can apply this SES approach to other countries that 
have experienced rapid development of LSIPs. As of January 2020, 138 

countries had joined the Belt and Road Initiative (https://www.yidaiyil 
u.gov.cn/) and many more LSIPs under the BRI are either under con-
struction or under planning (https://green-bri.org/). Some of those 
infrastructure projects incurred doubt and dispute. For example, the 
Kunming-Singapore railway corridor is currently suspended in Malaysia 
because of political and funding conflicts; for the Budapest-Belgrade 
railway case, despite not having been started yet, it already shows so-
cial concerns about the environmental impact. It is important for in-
vestors and project managers to conduct a rigorous and transparent 
environmental impact assessment first before project planning, and 
draw insights and develop media strategies from public sentiment 
analysis to help mitigate the potential challenges in implementing those 
projects. In this study, we took land use/land cover change and night-
time light change as indicators of the environmental and economic 
impact, and took sentiment on BRI-LSIPs from the social media platform 
Twitter as an indicator of the social impact. Future research could 
incorporate more comprehensive social media data and recently devel-
oped remote sensing environmental indicators – such as concentration 
of air pollutants from the Sentinel-5 Precursor TROPOMI multispectral 
sensor (Guo, 2017; Veefkind et al., 2012), freshwater stress derived from 
the Gravity Recovery and Climate Experiment (GRACE) satellites 
(Richey et al., 2015; Rodell et al., 2018), and the land surface temper-
ature detected from Landsat images (Ranagalage et al., 2017) – into 
investigating transportation-related LSIPs and many other types of LSIPs 
(such as power plants, ports, water supply pipelines). 

In addition, since countries are more connected than ever before in 
this increasingly globalized world, collaborations will be the key to 
achieving multilateral win-win development and sustainability. With 
the interactions among countries extending from nearby partnerships to 
more distant ones, LSIPs in the Global South are increasingly supported 
by international finance, like the BRI. However, differences in cultural, 
social, and environmental conditions may incur many unexpected im-
pacts and conflicts. In the meantime, large-scale infrastructure projects – 
such as transportation, pipelines, power plants, and dam constructions – 
may benefit a certain group of people at the cost of others. For instance, 
the transportation network by CPEC made interregional trade more 
convenient in northern Pakistan, but unintentionally led to the melting 
of glaciers and consequently flooding downstream. Dam constructions 
may help people in the upper stream enjoy more abundant water and 
more affordable electricity, but would generate unexpected impact on 
the livelihoods of the downstream communities (Golden et al., 2019; 
Latrubesse et al., 2017; Moran et al., 2018). Further study needs to 
consider human-nature interactions across scales and over distances (e. 
g., internally, nearby, and far away) by applying the integrated meta-
coupling framework (Liu, 2017). With these integrated efforts, we hope 
information from comprehensive assessment like this study can help 
inform decision-makers in future LSIP planning and implementation to 
address the potential socio-environmental impact, and help countries to 
fulfill the United Nations’ Sustainable Development Goals (SDGs) (Sachs 
et al., 2019; Xu et al., 2020), particularly SDG 9 (to build resilient 
infrastructure and promote inclusive and stable industrialization) and 
SDG 17 (Partnerships to achieve the Goal). 
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Kim, M., Yu, D.W., 2020. Horizon scan of the belt and road initiative. Trends Ecol. 
Evol. 35, 583–593. https://doi.org/10.1016/j.tree.2020.02.005. 

Isaksson, A.-S., Kotsadam, A., 2018. Racing to the bottom? Chinese development projects 
and trade union involvement in Africa. World Dev. 106, 284–298. https://doi.org/ 
10.1016/j.worlddev.2018.02.003. 

Janowicz, K., Scheider, S., Pehle, T., Hart, G., 2012. Geospatial semantics and linked 
spatiotemporal data – past, present, and future. Semant. Web 3, 321–332. https:// 
doi.org/10.3233/SW-2012-0077. 

Jiang, H., Qiang, M., Lin, P., 2016. Assessment of online public opinions on large 
infrastructure projects: a case study of the Three Gorges Project in China. Environ. 
Impact Assess. Rev. 61, 38–51. 

Johnson, M.L., Campbell, L.K., Svendsen, E.S., McMillen, H.L., 2019. Mapping urban 
park cultural ecosystem services: a comparison of twitter and semi-structured 
interview methods. Sustainability 11, 6137. https://doi.org/10.3390/su11216137. 

Jones, K., Nurse, J.R.C., Li, S., 2020. Behind the mask: a computational study of 
anonymous’ presence on twitter. ICWSM 14, 327–338. 

Y. Li et al.                                                                                                                                                                                                                                        

https://doi.org/10.1016/j.envsci.2021.07.020
http://refhub.elsevier.com/S1462-9011(21)00205-7/sbref0005
http://refhub.elsevier.com/S1462-9011(21)00205-7/sbref0010
http://refhub.elsevier.com/S1462-9011(21)00205-7/sbref0010
https://doi.org/10.1371/journal.pone.0189327
https://doi.org/10.1038/s41893-018-0059-3
https://doi.org/10.1016/j.biocon.2010.02.009
http://refhub.elsevier.com/S1462-9011(21)00205-7/sbref0030
http://refhub.elsevier.com/S1462-9011(21)00205-7/sbref0030
http://refhub.elsevier.com/S1462-9011(21)00205-7/sbref0030
http://refhub.elsevier.com/S1462-9011(21)00205-7/sbref0035
http://refhub.elsevier.com/S1462-9011(21)00205-7/sbref0035
http://refhub.elsevier.com/S1462-9011(21)00205-7/sbref0035
https://doi.org/10.1016/j.chb.2015.11.043
http://refhub.elsevier.com/S1462-9011(21)00205-7/sbref0045
http://refhub.elsevier.com/S1462-9011(21)00205-7/sbref0045
http://refhub.elsevier.com/S1462-9011(21)00205-7/sbref0045
http://refhub.elsevier.com/S1462-9011(21)00205-7/sbref0050
http://refhub.elsevier.com/S1462-9011(21)00205-7/sbref0050
http://refhub.elsevier.com/S1462-9011(21)00205-7/sbref0050
https://doi.org/10.1016/j.worlddev.2015.03.007
http://refhub.elsevier.com/S1462-9011(21)00205-7/sbref0060
http://refhub.elsevier.com/S1462-9011(21)00205-7/sbref0060
http://refhub.elsevier.com/S1462-9011(21)00205-7/sbref0065
http://refhub.elsevier.com/S1462-9011(21)00205-7/sbref0065
http://refhub.elsevier.com/S1462-9011(21)00205-7/sbref0065
http://refhub.elsevier.com/S1462-9011(21)00205-7/sbref0065
https://doi.org/10.1016/j.heliyon.2021.e06322
https://doi.org/10.1371/journal.pbio.3000860
http://refhub.elsevier.com/S1462-9011(21)00205-7/sbref0080
http://refhub.elsevier.com/S1462-9011(21)00205-7/sbref0080
https://doi.org/10.1038/s41467-020-20142-y
https://doi.org/10.1038/s41467-020-20142-y
http://refhub.elsevier.com/S1462-9011(21)00205-7/sbref0090
http://refhub.elsevier.com/S1462-9011(21)00205-7/sbref0090
http://refhub.elsevier.com/S1462-9011(21)00205-7/sbref0095
http://refhub.elsevier.com/S1462-9011(21)00205-7/sbref0095
http://refhub.elsevier.com/S1462-9011(21)00205-7/sbref0100
http://refhub.elsevier.com/S1462-9011(21)00205-7/sbref0100
https://doi.org/10.1111/cobi.13104
http://refhub.elsevier.com/S1462-9011(21)00205-7/sbref0110
http://refhub.elsevier.com/S1462-9011(21)00205-7/sbref0110
https://doi.org/10.1080/01431161.2017.1342050
https://doi.org/10.1080/01431161.2017.1342050
http://refhub.elsevier.com/S1462-9011(21)00205-7/sbref0120
http://refhub.elsevier.com/S1462-9011(21)00205-7/sbref0120
http://refhub.elsevier.com/S1462-9011(21)00205-7/sbref0120
https://doi.org/10.1016/j.compenvurbsys.2018.07.003
http://refhub.elsevier.com/S1462-9011(21)00205-7/sbref0130
http://refhub.elsevier.com/S1462-9011(21)00205-7/sbref0130
http://refhub.elsevier.com/S1462-9011(21)00205-7/sbref0135
https://doi.org/10.1177/0009445519853697
https://doi.org/10.1177/0009445519853697
http://refhub.elsevier.com/S1462-9011(21)00205-7/sbref0145
https://doi.org/10.3389/fsufs.2019.00093
https://doi.org/10.3389/fsufs.2019.00093
https://doi.org/10.1016/j.rse.2017.06.031
https://doi.org/10.2307/2118443
https://doi.org/10.1080/20964471.2017.1403062
https://doi.org/10.1126/science.1244693
https://doi.org/10.1126/science.1244693
https://doi.org/10.1109/ICSC.2017.76
https://doi.org/10.1111/gec3.12404
http://refhub.elsevier.com/S1462-9011(21)00205-7/sbref0185
http://refhub.elsevier.com/S1462-9011(21)00205-7/sbref0185
http://refhub.elsevier.com/S1462-9011(21)00205-7/sbref0185
http://refhub.elsevier.com/S1462-9011(21)00205-7/sbref0185
https://doi.org/10.1111/cobi.13317
https://doi.org/10.1111/cobi.13317
https://doi.org/10.1016/j.tree.2020.02.005
https://doi.org/10.1016/j.worlddev.2018.02.003
https://doi.org/10.1016/j.worlddev.2018.02.003
https://doi.org/10.3233/SW-2012-0077
https://doi.org/10.3233/SW-2012-0077
http://refhub.elsevier.com/S1462-9011(21)00205-7/sbref0210
http://refhub.elsevier.com/S1462-9011(21)00205-7/sbref0210
http://refhub.elsevier.com/S1462-9011(21)00205-7/sbref0210
https://doi.org/10.3390/su11216137
http://refhub.elsevier.com/S1462-9011(21)00205-7/sbref0220
http://refhub.elsevier.com/S1462-9011(21)00205-7/sbref0220


Environmental Science and Policy 124 (2021) 527–540

539

Jun, C., Ban, Y., Li, S., 2014. Open access to earth land-cover map. Nature 514, 434. 
https://doi.org/10.1038/514434c. 

Kanwal, S., Chong, R., Pitafi, A.H., 2019. Support for China–Pakistan Economic Corridor 
development in Pakistan: a local community perspective using the social exchange 
theory. J. Public Aff. 19, e1908. https://doi.org/10.1002/pa.1908. 
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