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ABSTRACT. The world has become increasingly metacoupled through flows of materials, energy, people, capital, and information
within and across systems. Transboundary flows, connecting adjacent and distant systems, are deemed the most critical indicators for
measuring the intensity of interactions among coupled human-natural systems. To advance metacoupling flow research and governance,
we make the first attempt to develop a typology of transboundary flows using six flow attributes (i.e., type, magnitude, direction,
distance, time, and mode). Furthermore, we synthesize a portfolio of quantitative and practical methods for characterizing
transboundary flows. To effectively govern transboundary flows for global sustainability and resilience, we highlight the need to recognize
the shared risks and goals embedded in the interlinkages, use system thinking, and enhance multilateral cooperation.
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INTRODUCTION
Everything is connected to everything else (Barabási 2014), and
even things far away from each other become increasingly
interconnected in the globalized Anthropocene (Kapsar et al.
2019, Carlson et al. 2020). Since the advent of the “Great
Acceleration” in the mid-20th century (Steffen et al. 2015), there
has been a significant surge in the exchange of goods, as well as
the flows of materials, resources, energy, capital, and information
within and between systems. These heightened interactions have
resulted in complex and far-reaching socioeconomic and
environmental impacts spanning local to global scales, and
impacted the progress toward achieving the United Nations
Sustainable Development Goals (SDGs; Liu 2018).  

To address those cross-scale challenges and achieve sustainable
development (i.e., “development that meets the needs of the
present without compromising the ability of future generations
to meet their own needs” Brundtland 1987), a number of
sustainability theories and frameworks have been put forward
(Turner et al. 2003, Folke 2006, Liu et al. 2007, 2015a, Ostrom
2009, Liu 2017, Clark and Harley 2020, Chen et al. 2022). Among
these, the metacoupling framework is a newly developed and more
integrated conceptual construct that comprehensively links not
only socioeconomic-environmental interactions within a place,
between adjacent places, but also between distant places (Liu
2017). The framework consists of five core components: systems
(e.g., country, state, and region), flows (e.g., movements of
information and goods), agents (entities that facilitate flows such
as traders and policy makers), causes (reasons behind the flows),
and effects (consequences of the flows). Systems are further
classified as sending, receiving, and spillover systems (Liu 2017).
Sending and receiving systems are entities that send and receive
flows of material, energy, products, humans, capital, and
information. Spillover systems are entities that affect, or are
affected by, interactions between sending and receiving systems.
The framework has been widely used across different places, e.g.,

Arctic, tropical, and Antarctic regions (da Silva et al. 2021,
Vergara et al. 2021, Kapsar et al. 2022a); rural and urban areas
(Herzberger et al. 2019, Carlson et al. 2022); sectors, e.g.,
conservation and tourism (Zhao et al. 2018, 2020); and issues such
as those related to planetary boundaries, e.g., pollution,
biodiversity, biogeochemical flows, climate change, freshwater
use, land use (Rockström et al. 2009). Recent studies have
elaborated the key concepts and methodologies for characterizing
agents (Dou et al. 2019, 2020), feedback (Hull et al. 2015), and
systems (Liu et al. 2018a) in the metacoupling framework. These
studies, therefore, provided an in-depth understanding of the
framework. Flows, as the most critical component that connects
adjacent and distant systems, have frequently been used to
describe the strength of connectivity among systems, as well as
the extent of impacts that one system imposed on the other (Liu
et al. 2013, Eakin et al. 2017, Xu et al. 2020a). Yet, a
comprehensive synthesis about the attributes of flows is still
lacking.  

Flows have drawn increasing attention in recent decades partly
because of the growing transboundary activities (e.g.,
international trade) and the associated prominent transboundary
impacts (Liu 2020, Xu et al. 2020a). Understanding and
quantifying these transboundary flows are therefore critical to
implement the metacoupling framework, as well as to inform
other disciplines to address the world’s pressing socio-
environmental challenges for sustainability (Dou et al. 2018, Yang
et al. 2018, Xu et al. 2020b, Li 2021). Because of the diversity of
transboundary flows across the metacoupled world, a clear
typology is needed to better understand the complexity of system
interactions. Schröter et al. (2018) provided a typology for
ecosystem service (ES) flows, and Koellner et al. (2019) further
provided guidance for assessing four types of ES flows. Their work
laid a foundation for subsequent applications in investigating
interregional flows of multiple ecosystem services (Hou et al.
2020, Kleemann et al. 2020, Klapper and Schröter 2021, Wang et
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al. 2021, 2022). In addition to ES flows, there are other types of
flows, such as information flows (de Lange et al. 2019), flows of
goods and products in trade (Wood et al. 2018, Liu 2020),
biophysical flows (e.g., movement of water, sediments, and
pollutants), movement of people (Müller et al. 2016, Chung et al.
2018, Horton et al. 2021) and organisms (Liu et al. 2017,
Wyckhuys et al. 2018). Noteworthily, virtual flows (e.g., virtual
water and virtual land that are embedded in trade products) have
increasingly been used to examine the often ignored
environmental and social impacts across borders (Wiedmann and
Lenzen 2018, Xu et al. 2020a). These diverse flows were often
investigated in separate fields to approach sustainability, but have
not been comprehensively synthesized. Different types of flows
may interact with each other in complex ways (e.g., amplification,
offsetting) and generate unexpected outcomes (Liu et al. 2015a).
Identifying multiple transboundary flows and understanding how
they interact to shape sustainable development is a new and
important frontier in sustainability research. A synthesis of
typologies for a range of transboundary flows across disciplines
would be beneficial in addressing complex human-environmental
challenges through holistic and interdisciplinary efforts.  

With more researchers from different disciplines interested in
applying the metacoupling framework to address real-world
sustainability issues but encountering methodology challenges,
there is also a great need to provide methodological guidance for
assessing transboundary flows. Closing the gap between
researchers interested in the metacoupling framework and the
variety of transboundary flows in the literature can have the
potential to provide a generalized, quantitative understanding of
different types of flows across the metacoupled planet. Armed
with the knowledge of various transboundary flows, scientists
could provide stakeholders with more quantitative and spatially
explicit socio-environmental flow information for facilitating
flow-based governance and for achieving a range of sustainability
goals. To advance the efforts for metacoupling flow research and
governance, we aim to: (1) develop a typology of transboundary
flows with illustrative examples; (2) highlight methods for
investigating the flows; and (3) discuss the usefulness of flow-
based governance.

TYPOLOGY OF TRANSBOUNDARY FLOWS
To characterize and quantify the various transboundary flows,
we synthesize existing knowledge and develop a typology using
six flow attributes (i.e., type, magnitude, direction, distance, time,
and mode; Fig. 1). The typology development was based on our
knowledge and a systematic review, guided by the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) standards (Page et al. 2021). For the review, we
collected relevant articles from the Web of Science by using the
tailored search terms “(#1 OR #2 OR #3).”  

#1: TS = (metacoupl* OR telecoupl* OR meta-coupl* OR tele-
coupl*) NOT (*coupler OR meta-meta)  

#2: TS = (sustainab*) NEAR/10 (“ecosystem service*”) NEAR/2
flow$  

#3: TS = (sustainab*) NEAR/10 (transboundary OR trans-
boundary OR transborder OR trans-border OR transnational
OR trans-national OR international OR interregional OR inter-
regional) NEAR/2 (flow$ OR migrat* OR movement* OR trade)
NOT (tradeoff* OR trade-off*)

 Fig. 1. Key attributes for characterizing transboundary flows:
system boundaries, magnitude, directions, distance, time, and
mode of flows. S – sending system, R – receiving systems, Sp –
spillover system.
 

In total, we compiled 730 related articles, all of which were
imported to and analyzed in Covidence, a web-based tool that
streamlines the process of title/abstract screening, full-text
screening, and data extraction (see details in Appendix 1). After
title/abstract screening and full-text screening, 289 papers were
included for data extraction and analysis (see Fig. S1 and a full
list of papers in Appendix 1). Although we focus on
transboundary flows, the typology is also applicable to flows
within a system.  

Defining system boundaries is critical to untangle the complexity
of various connections among different systems. Depending on
questions of interest, system boundaries can be defined by
political/administrative units (e.g., countries, states, counties,
cities), socioeconomic and cultural units (e.g., conservation donor
group, indigenous area), management units (e.g., protected areas),
or geographical and ecological units (e.g., hydrological units,
ecoregions; Liu et al. 2019, Qin et al. 2022). To limit the scope of
this study, we focus on transboundary flows among coupled
human and natural systems. Therefore, system boundaries
between individuals (e.g., human entities or environmental
elements) are not included in this study.

Flow type
Based on the nature of flows, we divide them into three broad
categories (Table 1).  

(1) Physical flows refer to the movement or transfer of physical
goods, materials, natural resources (e.g., water), substances (e.g.,
PM2.5 pollutants), animals, and people, as well as disease
transmission from one place to another (Table 1). Most of these
material and organism flows overlap with provisioning ecosystem
service flows (e.g., food, materials, fresh water, and energy; Díaz
et al. 2018, Schröter et al. 2018). Trade-related physical flows are
well covered in the metacoupling literature (Manning et al. 2023)
and were examined in 34% of the evaluated studies, followed by
human flows (8%; including tourism, human migration, and
human trafficking; Fig. 2). Human flows can be used to investigate
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 Table 1. Types of transboundary flows and the quantification methods. † Embodied nutrients are different from virtual nutrients (‡). The
former represents the matters or elements (e.g., protein, energy, zinc, calcium, iron, vitamin B12, folate, vitamin A, nitrogen, and
phosphorus) that are physically contained in the trade products, whereas the latter represents the matters used in the production process
but are not physically contained in the final products.
 
Categories Sub-category Commonly studied flow examples Methods

Physical flows Trade-related flows Trade of raw materials (e.g., wood, minerals, waste)
Trade of goods (e.g., foods, energy, wildlife, weapons)
Movement of embodied physical nutrients† (physical
content)

• Statistical data-based approach
• Data mining & crowdsourcing approaches
• Modeling approaches (e.g., gravity model)
• Remote sensing (e.g., detection of container ships and cargo trucks)

Biophysical flows Water flows
Pollutants dissemination through the air (e.g., GHG
emissions, PM2.5) or waterway (e.g., nitrogen leaching)

• Statistical data-based approach
• Process-based hydrological models
• Air current models
• Remote sensing (e.g., use GRACE satellites to track water movement)

Disease transmission (e.g., waterborne diseases, airborne
diseases like COVID-19)

• Big data approach (e.g., human mobility trajectory from mobile phone
and social media)
• Modeling

Active movement of
humans and
animals

Human flows
- Tourism
- Human migration (e.g., refugees, skilled professionals)
- Human trafficking

• National visitor statistics
• Big data approach (e.g., human mobility trajectory from mobile phone
and social media)
• Nighttime light remote sensing data for estimating human migration

Animal migration
Species dispersal (e.g., species invasion)

• Traditional field observation
• Stationary camera traps
• Citizen science
• Modern animal tracking technologies
• Modeling (e.g., species distribution models)

Non-material
flows

/ Flows of social services (e.g., international investments in
conflict prevention and peacekeeping)

• Statistical data-based approach

Financial flows (e.g., foreign direct investment, foreign
aid, remittances, payment for ecosystem services)

• Statistical data-based approach
• Data mining & crowdsourcing approaches

Information (e.g., knowledge, technology, trade
agreements)

• Statistical data-based approach
• Public surveys
• Big data approach (e.g., geotagged text, photos, and videos)

Virtual flows / Environmental footprints (e.g., virtual water/energy/land/
emissions/phosphorus/nitrogen, biodiversity embedded in
production‡)

• Life cycle assessment
• Input-output analysis

Social footprints (e.g., social risks embodied in
production)

a variety of metacoupling effects. Apart from human flows related
to tourism, migration of humans in traditionally intellectual
careers can be used to study the extent to which brain-drain
(substantial emigration or migration of valuable specialists, such
as doctors, healthcare professionals, scientists, engineers, or
financial professionals) can harm a country’s economy and
sustainable development (Brücker et al. 2013). Studies on water-
related flows account for 6% of the evaluated studies, followed by
pollutants (2%), animal migration (2%), and species dispersal
(1%). Among water-related flow studies, > 90% focused on
transboundary surface water, while only a small portion of the
studies investigated transboundary groundwater or aquifers
(Müller et al. 2017, Luetkemeier et al. 2021, Mullen et al. 2022).
Future studies need to include groundwater as a crucial element
in transboundary watershed governance. Additionally, it is
essential to conduct a more extensive investigation into the
“causes” (such as excessive pumping in one system) and “effects”
(such as drawdown in the other system and common-pool
overdraft) of groundwater flow across systems, particularly in
internationally shared river basins (Mullen et al. 2022).  

(2) Non-material flows refer to the transfer of intangible resources
or services between systems. These flows usually include the
exchange of information (10%) and financial flows (e.g., foreign
direct investment, foreign aid, and remittances; 14%).
Information flows can be in the form of technology transfer,
knowledge transfer, and other news or messages that could be

 Fig. 2. Flow types examined in the literature. ES – ecosystem
services, EF – environmental footprints, SF – social footprints, N/
P – nitrogen/phosphorus.
 

spread through media channels or social ties, while financial flows
can occur through various channels such as banks, stock markets,
or digital platforms. Flows of cultural ecosystem services (e.g.,
recreational and spiritual use of nature) also belong to non-material
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flows. Information flows and financial flows have emerged to
generate unexpected large socio-environmental impacts (Eakin et
al. 2014, Liu et al. 2022a, Qin et al. 2022). For example, the Belt
and Road Initiative pledged to invest US$1 trillion in 138
countries to boost infrastructure and economic development but
led to the loss of natural land (Li et al. 2021).  

(3) Virtual flows are also intangible but specifically refer to the
embedded resources and socio-environmental risks (or
footprints) “hidden” in products (Galli et al. 2012). Virtual flows,
such as virtual water and energy, do not have a physical existence
but are a conceptual tool used to measure the hidden socio-
environmental impacts associated with the trade of goods and
services. For example, virtual water is the water “hidden” in the
products, services, and processes people buy and use every day.
Virtual water often goes unseen by the end-users of a product or
service, but that water has been consumed throughout the value
chain, which makes the creation of that product or service possible
(Allan 1998, Hoekstra and Hung 2005). Virtual nitrogen is any
nitrogen that was used in the food production process but is not
physically contained in the final products (Galloway et al. 2007,
Leach et al. 2012). Similarly, virtual flows also cover embedded
energy, GHG emissions, and phosphorus. In addition to the
resource and environmental aspects, social footprints (e.g.,
vulnerable employment, child labor, and health risks) embedded
in trade have drawn growing attention, but have not been well
examined (only covered in 1% of the evaluated studies) because
of data challenges (Simas et al. 2014, Alsamawi et al. 2017a, Xiao
et al. 2017, Chung et al. 2021). Virtual flow is an important
concept to unveil the indirect (or externalized) drivers of local
resource problems and pave the way for analyzing what can be
done elsewhere rather than locally to improve the sustainability
and equity of resource use (Hoekstra 2017).

Flow magnitude
The magnitude of flows is the amount of flows and can be
measured by weight (e.g., in kg), volume (e.g., in m³), value (e.g.,
in US dollars), and number count. Because sustainability is, in
part, affected by the size of humanity’s footprint relative to the
planet’s carrying capacity (Hoekstra and Wiedmann 2014), flow
magnitude is usually the key indicator to estimating the potential
impacts on sending systems, receiving systems, or spillover
systems with consideration of each system’s resource endowment.
Over 80% (n = 229) of studies evaluated flow magnitude among
systems. The magnitude of transboundary flows has increased
dramatically in recent decades (Munroe et al. 2019). For example,
international tourists leaped 20-fold (from 69 million in 1960 to
1.4 billion in 2018; Herre et al. 2023), and international food
exports surged 45-fold during the same period (Liu 2020).

Flow directions
Flows can be unidirectional, bidirectional, multidirectional, or
omnidirectional (Fig. 3). For unidirectional, bidirectional, and
multidirectional flows, it is relatively intuitive to track the exact
direction because the flows usually follow certain pathways that
proceed directly between sending and receiving systems, or
indirectly between the two by passing through or leaking into the
spillover systems (Liu et al. 2018a; Fig. 1). The direction of a
specific flow determines which system is the sending system and
which is the receiving system. For instance, when it comes to food
flows, if  country A exports food to country B, then country A is
considered as the sending system; when examining money flows

(i.e., when country B pays country A for food products), country
A is considered the receiving system in terms of financial
transactions. Conventionally, outward flows are also termed
“outflows”, and incoming flows are termed “inflows.” Among the
analyzed studies, approximately 83% (n = 238) provided
information on flow directions. However, sometimes, it can be
challenging to track the exact flow directions of omnidirectional
diffusions, such as greenhouse gases and air pollutants. One way
to determine the directions is based on atmospheric currents at
broad spatial scales (Schröter et al. 2018). Another way is to
identify the source of emissions and treat the surrounding regions
as receiving systems without directional bias (Fisher et al. 2009).

 Fig. 3. Possible flow directions. (a) unidirectional, e.g., river
flows; (b) bidirectional, e.g., bilateral trade or investment; (c)
multidirectional, e.g., overseas development finance from one
country to multiple countries (China’s Belt and Road
Initiative); (d) omnidirectional: the flows diffuse to the
surrounding regions, e.g., carbon emissions.
 

Flow distance
Distances between systems can be geographical, political,
institutional, social, or cultural (Boisso and Ferrantino 1997,
Tadesse and White 2010, Eakin et al. 2014, Liu 2017, Liu et al.
2018a, Tromboni et al. 2021). Geographic distance is the most
used measurement (95.6%, n = 283) in the evaluated literature
and is determined by variables such as Euclidean space distance,
or dummy variables such as whether or not two systems share
common borders (e.g., land border or water border), and whether
or not two systems have transportation or communication links
(Takayama 2013). Geographic distance is useful to determine
whether a flow such as trade flow is a telecoupling or pericoupling
process (Xu et al. 2020a). Because of geographic distance is
usually linked with transportation, it has also been used to
estimate environmental costs embedded in product transport. For
example, the concepts of “food miles” and “footprint distance”
have been used to measure the impact of food transport on the
environment (Coley et al. 2009, Li et al. 2022).  

Other distance measurements, such as cultural distance (0.7%)
and administrative distance (3.0%), have been used for trade
analysis and modeling and could be useful for future
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metacoupling studies beyond international trade. Cultural
distance refers to differences in norms, beliefs, and values between
countries (Hofstede 2001). Increasing cultural distance between
nations is expected to have a negative effect on trade flows between
them because it complicates trade and leads to increased
transaction costs (Söderström 2008). Key attributes creating
cultural distance include different languages, different ethnicities,
lack of connective ethnic or social networks (e.g., colony/
colonizer), different religions, and different social norms.
Administrative distance can be measured by the absence of
colonial ties, the absence of shared monetary or political
association, political hostility, and institutional weakness.

Flow time
The temporal dimension of flows describes the timing (e.g., when
the flow starts), duration (i.e., from start to end), frequency, and
change rate of a targeted flow. Knowing the temporal dynamics
of flows can also help understand time lags in the metacoupled
human-natural systems (Liu et al. 2007). For example, in a
telecoupled system, the sending and receiving systems are usually
far away from each other. Therefore, there are usually time lags
between changes in the sending system and effects in the receiving
system. For instance, the impact (e.g., coastal eutrophication and
“dead zones”) of excess fertilizer applied to agricultural land in
the U.S. Midwest cannot be immediately observed at the
Mississippi River estuary (Van Meter et al. 2018, Li et al. 2023).
Temporal scales of interregional flows vary and largely rely on
certain types of flows. For instance, trade-related flows are usually
recorded at the annual level, with some at the quarter or month
level (USDA ERS 2022). Physical water flow monitoring can be
at the daily or even minute level (e.g., the USGS real-time
streamflow data).

Flow Mode
Flow mode distinguishes different ways of movement, including
several types: (1) trade-related flows depend on man-made
carriers (e.g., boats, vehicles, airplanes, pipelines, and cable);
50.5% of the evaluated studies examined this flow mode; (2)
biophysical flow through ecological processes (12.3%), for
example, water and sediment flows follow certain hydrological
pathways. In some cases, water flow might also follow man-made
channels after human intervention. For example, China
implemented the South-to-North Water Transfer Project to divert
freshwater from water-abundant southern China to northern
China to mitigate water shortages (Zhao et al. 2015, Xu et al.
2020b); (3) movement of people and animals (15.1%) for certain
purposes (e.g., tourism via airplanes, and animal migration
through flying or walking; Chen et al. 2012, Hulina et al. 2017);
(4) flows of information and knowledge through man-made
communication channels (7.7%; Schröter et al. 2018, Schirpke et
al. 2019). Other flow modes, such as financial/capital flows
through banking or debt, transfer ownership or the right to use
of land, account for 14.1% of the evaluated studies.  

Flow mode is important for characterizing flows and the
interactions among systems. Particularly, the reliability of man-
made transportation largely depends on transport infrastructure
networks and intergovernmental networks (Liu et al. 2013).
Disruption of these networks, e.g., port disruptions, can have a
large impact on international trade flows (Verschuur et al. 2023).

Interactions among flow attributes
Although we elaborate on each of the six flow attributes above
individually, they are necessarily interrelated in predicting
metacoupling consequences. Flow magnitude alone is not the
single factor in determining the potential impacts. Taking the
pandemic as an example, small flows (i.e., magnitude attribute)
of disease transmission with high frequency (i.e., frequency
dimension of the time attribute) played a critical role in the
beginning stage (i.e., timing dimension of the time attribute)
among nearby systems (i.e., distance and direction attributes).
Later, the disease expanded to distal systems (i.e., distance,
direction, and duration attributes) via international flights (i.e.,
flow mode attribute), and large flows (i.e., magnitude attribute)
became the dominant factor. The importance of each attribute
and interactions among the attributes varies in different contexts,
and can change over time and across spaces (or systems). For
instance, during the pandemic, disease transmission greatly
increased while trade flows were reduced substantially. Therefore,
a collection of flow attributes presented here can be helpful for
more inclusively examining complex interactions among coupled
human-natural systems over different distances.

METHODS FOR QUANTIFYING FLOWS
Approaching and characterizing flows are key to describing the
reciprocal interactions among systems and estimating the
potential impacts. According to the nature of flows and our
systematic review, we summarized the commonly used methods
for approaching flows by flow type (Table 1). Because of the
distinct methods used in practice, in this section, we further
divided the physical flow category into three sub-categories based
on flow mode (i.e., trade-related flows, biophysical flows, and
active movement of humans and animals). The methods
presented here are far from complete, but the objective is to
provide readers with a starting point to initiate their metacoupling
projects. Additionally, we discussed the barriers and highlighted
the emergence of new data (e.g., remote sensing) and approaches
for flow quantification. For instance, recent developments in big
data provided a rich data source for mining and tracing human
movements, information flows, and illicit trade (Di Minin et al.
2019). We hope that these new approaches can stimulate wider
transfer learnings and implementation in quantifying other
similar types of flows.

Physical flows

Trade-related flows
The number of studies related to trade flows is more than double
that of any other type of flow (Fig. 2). We, therefore, summarized
the three primary methods (i.e., statistical data-based approach,
data mining/crowdsourcing approach, and modeling approach)
for quantifying trade flows and provided elaboration on each of
them below.  

(1) Statistical data are widely available at the national level but
are relatively limited at the subnational level (Fig. 4). National-
level bilateral trade data can be acquired from either the Food
and Agriculture Organization Corporate Statistical Database or
the United Nations Commodity Trade Statistics Database (UN
Comtrade). The former focuses on agricultural products, while
the latter includes broader materials and product coverage. At the
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 Fig. 4. Flow types and corresponding data availability for quantification across organizational levels. The data availability based on
our systematic review provides a broad and general pattern across regions, though some regions may have variations. The width of
the horizontal flows represents the number of studies considered in the systematic review. “+++” – high data availability, “++” –
moderate data availability, “+” – low data availability. ES – ecosystem services, EF – environmental footprints, SF – social
footprints, N/P – nitrogen/phosphorus.
 

subnational level, the U.S. Economic Research Service provides
state-level agricultural trade estimated from farm production
value and farm cash receipts for exported products (USDA ERS
2022). In addition to the conventional traded products, illicit trade
can have more unexpected impacts on sustainability but is more
difficult to trace the flows (Magliocca et al. 2021). The Stockholm
International Peace Research Institute Arms Transfers Database
is among the few that compiled information on the trade of
weapons. Illegal wildlife trade information is becoming more
accessible thanks to research initiatives, such as TRAFFIC
(https://www.traffic.org/), CITES (the shorter name for the
Convention on International Trade in Endangered Species of
Wild Fauna and Flora; Koellner et al. 2019), and the Oxford
Martin Programme on Wildlife Trade (https://www.illegalwildlifetrade.
net/). At the local level, statistical trade data are less available in
some regions but are accessible in other regions. For example,
panda loans can be obtained from the Giant Panda registry
managed by the China Conservation and Research Center for the
Giant Panda (Liu et al. 2015a).  

(2) Data mining and crowdsourcing approaches are emerging in
recent years, showing great potential to fill the data gap at the
subnational level and even the local organizational level (e.g.,
company level). For instance, the Land Matrix Initiative takes a
decentralized data collection strategy by establishing a broad
international network in different regions to obtain information
on large-scale land acquisitions. They synthesize and cross-check

data from multiple sources (such as research papers, policy
reports, official government records, company websites, annual
reports, media reports, and field-based research projects) to
produce data products on the global flow of transnational land
acquisitions (Land Matrix 2022). The rich information at very
fine spatial and temporal scales has facilitated food-water-energy-
land-related telecoupling studies across scales (Liu et al. 2014,
Liao et al. 2016, Chiarelli et al. 2022). Similarly, the Trase Finance
initiative takes a unique supply chain mapping approach to map
in unprecedented detail subnational trade flows by combining
self-disclosed data from companies with customs, shipping, tax,
logistics, and other data (Godar et al. 2015). The approach is
unique because it links consumer countries and traders with the
patterns of ownership and investment in trading companies, as
well as places of production down to the lowest level of
government administrative unit (e.g., individual farms or
production areas). This spatially explicit information can help
trace multiple environmental impacts (e.g., deforestation,
biodiversity loss) of supply chains in great detail (Schim van der
Loeff et al. 2018, Green et al. 2019, dos Reis et al. 2020, zu
Ermgassen et al. 2020, 2022). However, these two example data
initiatives are largely focused on land deals and agricultural
commodity supply chains, and the spatial coverage is still
relatively low. Future research could build on these novel and
creative approaches and further expand data initiatives to address
data gaps in mapping flows of other types of goods and services.

https://www.traffic.org/
https://www.illegalwildlifetrade.net/
https://www.illegalwildlifetrade.net/
https://www.ecologyandsociety.org/vol28/iss3/art19/


Ecology and Society 28(3): 19
https://www.ecologyandsociety.org/vol28/iss3/art19/

(3) Modeling and simulation approaches are especially useful
when statistical data or public data are insufficient. The gravity
model is widely used for analyzing bilateral trade flows of various
commodities at both national and subnational levels (Liu et al.
2015b, Kabir et al. 2017). The gravity model is based on
Newtonian physics, and trade volume between two areas is
modeled as an increasing function of their sizes (often using GDP)
and a decreasing function of the distance between the two
(Anderson 1979, Kepaptsoglou et al. 2010). Though geographic
distance is the most commonly used distance variable, revised
versions of gravity models have also considered other impedance
factors such as transportation costs, tariffs, quality of
infrastructure, and common language (Kepaptsoglou et al. 2010).
In addition to the gravity model, input-output (IO) analysis and
generalized equilibrium models have been exploited for
simulating trade flows. Constructing interregional IO tables
usually takes large financial and labor efforts, and running
computable generalized equilibrium models requires a
considerable number of parameters (Boero et al. 2018). For
application purposes, users usually resort to existing IO tables
and datasets released by professional institutions and teams. For
instance, the Food and Agriculture Biomass Input-Output tables
provide a comprehensive flow of agricultural, food, and forestry
products among 191 countries (Bruckner et al. 2019). The
Chinagro model, a geographically detailed general equilibrium
model, depicts the interregional trade of agricultural products
among eight regions in China (Fischer et al. 2007, Dalin et al.
2014).  

In addition to the aforementioned models focusing on national
and subnational levels, freight flow models can be used to map
trade flows at more spatially explicit levels (e.g., county and pixel
level) (Lin et al. 2019, Kinnunen et al. 2020, Karakoc et al. 2022).
For example, the U.S. Bureau of Transportation Statistics and
Federal Highway Administration integrate data from a variety of
sources (e.g., Commodity Flow Survey) to create a freight
movement database, Freight Analysis Framework, among states
and major metropolitan areas by all modes of transportation
(Hwang et al. 2021). Lin et al. (2019) and Karakoc et al. (2022)
further downscaled this data and produced the U.S. county-level
food flows. At finer spatial resolution, Kinnunen et al. (2020)
combined the foodsheds (self-sufficient areas with internal
dependencies) approach and freight analysis and modeled food
flow paths at 30 arcmin resolution. Both examples are on food
flows, but the approach can also be applied to other traded
commodities.  

(4) Other novel datasets, such as the automatic identification
system (AIS) and remote sensing, are increasingly used and have
great potential for tracing and estimating trade flows (Kapsar et
al. 2023). AIS is an automatic tracking system that uses
transceivers on ships (Kapsar et al. 2022b), which can provide
rich and real-time ship locations and movement trajectories (Mou
et al. 2020). In addition, remotely sensed satellite imagery can also
be used to detect and classify container ships and cargo trucks
(Fisser et al. 2022, Polinov et al. 2022, Liu et al. 2023, Shao et al.
2023). In combination with auxiliary data, both AIS and remote
sensing-derived data can also be used for modeling shipping
activities and estimating freight flows.

Biophysical flows
The methods for estimating the flows of water, sediments, and
pollutants (e.g., nitrogen, phosphorus, GHG emissions, and
PM2.5) range from field observations to process-based modeling.
Water flows, such as streamflow, are usually publicly available
from government-led or research institute-led observation
stations (e.g., the U.S. Geological Survey). For human-intervened
water flows, such as China’s South-to-North Water Transfer
Project, the amount of transferred water across regions can be
acquired from the management department or through public
reports. According to the most recent report, 50 billion m³ of
water has been transported from southern to northern China from
2014 to 2021 (Xinhua News Agency 2021). Researchers can also
deploy their own field observation stations to obtain related water
flow data. However, the scattered observation data have
drawbacks either due to limited spatial coverage or temporal
availability.  

Modeling approaches are often used for filling the field
observation data gaps. Hydrological models, such as the Soil &
Water Assessment Tool (SWAT), can be used to simulate the
quantity and quality (e.g., nitrogen and phosphorus
concentrations) of surface and groundwater in watersheds (Bieger
et al. 2017). SWAT does not directly model flows, but the outputs
can be used for estimation or as inputs for other flow models. The
Model to Assess River Inputs of Nutrients to seas is a widely used
flow model, which quantifies river export of nutrients (dissolved
N and P) from land to sea by the source at the sub-basin level
(Strokal et al. 2016). For a finer spatial scale, Bagstad et al. (2013)
developed an agent-based model termed “Service Path
Attribution Networks” (SPANs) on the Artificial Intelligence for
Ecosystem Services modeling platform. The SPAN initializes
agents from spatially explicit source (i.e., sending systems), sink,
and use data, and tracks the spatially explicit paths taken by
carrier agents through the network (e.g., hydrologic or
transportation networks, or the atmosphere) to determine the
quantity of goods or services reaching final users (i.e., receiving
systems). SPAN is a powerful tool to model the flows of
freshwater, riverine flood, and sediments (Bagstad et al. 2013).  

In addition, remote sensing is also an important data source to
characterize biophysical flows (e.g., river discharge and
sediments). For example, the GRACE (Gravity Recovery and
Climate Experiment) satellites are especially useful for tracking
large-scale transboundary water movement and monitoring
changes in underground water storage, large lakes, and rivers
(Richey et al. 2015). The flows of emissions (e.g., GHG and
PM2.5) through the air are more volatile and can be stimulated
by applying advanced air current models (Koellner et al. 2019)
and high-temporal resolution remote sensing (e.g., Sentinel-5P
and MODIS - Moderate Resolution Imaging Spectroradiometer;
Zhang et al. 2021).

Human and animal flows
Human migration data are recorded at multiple levels, such as the
national level for international migration and the subnational
level for interregional (within a nation) migration. Data can be
acquired from national or state statistical administrations. For
example, data on tourism flows can be collected from national
visitor statistics provided by the World Tourism Organization
(Chung et al. 2020). These data are usually collected through
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census surveys or self-reporting. Illegal human flows, however, are
less accessible. Such data might be sourced from data initiatives.
For example, the Counter-Trafficking Data Collaborative utilized
a crowdsourcing approach and collected anonymized human
trafficking data contributed by counter-trafficking organizations
around the world. Recent developments in big data using human
mobility trajectory from mobile phones and social media provide
alternative high-resolution and instant human flow data for
investigations (SafeGraph 2022). The human mobility data with
detailed geospatial information can also be used to model tourism
and disease transmission (e.g., COVID-19; Grantz et al. 2020, Kang
et al. 2020, Xiong et al. 2020, Chang et al. 2021). Moreover,
nighttime light remote sensing data, such as the Defense
Meteorological Satellite Program/Operational Linescan System
and the Visible Infrared Imaging Radiometer Suite on the NASA/
NOAA Suomi National Polar-orbiting Partnership satellite,
provide a great opportunity for monitoring human activities (e.g.,
human migrations) from regional to global scales (Müller et al.
2016).  

Animal migration and species dispersal (e.g., species invasion) are
commonly estimated based on traditional field observation, such
as birdwatching by individual researchers (Koellner et al. 2019),
hunting licenses (Koellner et al. 2019), and stationary camera traps
(Carter et al. 2012, Miller et al. 2017, Zhang et al. 2017). Other
forms of data collection approaches include citizen science (Fritz
et al. 2019, Yang et al. 2019), crowdsourcing approaches (e.g.,
geotagged wildlife photos and videos from social media platforms;
Di Minin et al. 2019), stable isotope analysis (Hobson and
Wassenaar 2008), and/or modern animal wearable tracking
technologies (Kays et al. 2022), including high-resolution global
positioning system tracking devices and geolocators (Hulina et al.
2017). Because these approaches can only capture a sample of the
whole population, species distribution models have often been used
alongside these approaches (Koellner et al. 2019).

Non-material flows
In an era of information, massive amounts of information flow
everywhere. To quantify the interregional flows of particular
information of interest, it is important to first identify the
information-sending systems and receiving systems. A sending
system can be quickly identified based on the source and content
of the information (such as who and where), whereas identifying
the receiving systems can be challenging, especially when the
number of information receivers can reach hundreds of thousands.
Based on the scales or certain system boundaries, one can identify
the receiving systems by examining the occurrence of news in local
public media and social media. Further, the number of keywords,
photos, and videos in geotagged social media (e.g., Twitter, Flickr,
Sina Weibo) and digital search engines (e.g., Google Trends), or the
number of newspaper articles, reports, and documentaries that
report about the sending system within or through the receiving
system could be used as a proxy to estimate the magnitude of
information flow (Liu et al. 2015a, Koellner et al. 2019, Li et al.
2021). However, although these proxies can serve as an
approximation, they might be biased in estimating the actual
magnitude of information flows. The bias can be introduced by the
representativeness of samples. For instance, social media
participants are not a random sample of the population. Therefore,
certain population groups with different demographic traits (e.g.,

age, education level, income) could be over- and under-
represented in social media data (Li et al. 2021). Similarly, the
heterogeneous coverage of social media platforms and devices
across regions, as well as the uncertainties caused by potential
noise of misinformation, can also bring bias in estimation. To
accurately estimate information flows using social media data,
there is a need to carefully handle the inherent bias in the data
(Wang et al. 2015).  

Knowledge transfer and technology transfer can be quantified in
the same way as information flows. Depending on the types of
technology, the technology transfer could also be measurable by
the trade flow approach. For example, energy-related technology
transfer can be measured by the trade quantity of high-tech energy
equipment and materials (e.g., solar panels and rare-earth metals)
(Fang et al. 2016, Fishman and Graedel 2019, Li et al. 2020).  

Flows of investment and financial aid are usually measured by
data from public statistical datasets, such as foreign direct
investment among countries. More granular data on
transboundary investment or aid have been recently compiled by
individual research groups. For instance, the AidData team at
William & Mary used data mining approaches to produce project-
level financial flow by coding over 1.5 million development
finance activities (AidData 2016, Custer et al. 2021). The Global
Development Policy Center at Boston University took a similar
approach and produced a high-precision dataset for China’s
overseas finance investment (Ray et al. 2021). These financial flow
data have been used for investigating international conservation
interests (Qin et al. 2022), the risk to global biodiversity (Yang et
al. 2021), and the social and environmental impacts of large-scale
overseas infrastructure development (Li et al. 2021).

Virtual flows
Virtual flows, or the embedded resources (or more broadly termed
as footprints) in products, have emerged as a set of major
indicators for evaluating the hidden socio-environmental impacts
associated with the trade (Galli et al. 2012, Fang et al. 2014,
Vanham et al. 2019, Xu et al. 2020a). As such, the quantification
of virtual flows usually requires data on the physical flows of
traded goods (Chen et al. 2023). Because the virtual resources are
the portion that was used in the production process but are not
physically contained in the final products, the end-users (or the
product receiving systems) usually cannot see or be aware of their
impacts on distant producing systems (or product sending
systems). The concept of virtual flows can thus be used to inform
final consumers to adjust their consumption behaviors (e.g.,
changing diets or sourcing products from more sustainable
production systems). There are two widely used approaches for
quantifying virtual flows: Multi-Regional Input Output (MRIO)
analysis, and life cycle assessment (LCA).  

(1) MRIO is a macroeconomic approach that tracks financial
flows between countries’ major economic sectors. Developed by
the Nobel Prize Laureate Wassily Leontief, input-output analysis
is an economic technique that relies on input-output tables.
Monetary MRIO tables can be coupled with satellite accounts
data on a range of environmental indicators (e.g., land, water,
energy, emissions, biodiversity risk) to estimate environmental
footprint flows (Lenzen et al. 2012, Zhao et al. 2015, Oita et al.
2016, Xu et al. 2019, Li et al. 2022). The basic idea is to convert
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 Table 2. Summary of the main global Multi-Regional Input Output (MRIO) databases. † RoW: Rest of World. ‡ FABIO is a physical
IO table, while others are all monetary tables.
 
Database name Countries Sector details Time Extensions Unit

EORA World
(190)

20–500 (Full Eora);
26 (Eora26)

1990–2021 GHG emissions, labor inputs, air
pollution, energy use, water
requirements, land occupation, N and
P emissions, primary inputs to
agriculture

USD

EXIOPOL-EXIOBASE World
(44 = 43+1RoW† =
27EU+16+1)

163 1995–2021 30 emissions, 60 IEA energy carriers,
water, land, 80 resources

EUR

World Input-Output
Database (WIOD)

World
(41 = 40+1RoW =
27EU+13+1)

35 1995–2009 Detailed socioeconomic and
environmental satellite accounts

USD

Global Trade Analysis
Project (GTAP)

World
(141 = 121+20 Regions)

65 1990, 1992, 1995,
1997, 2001, 2004,
2007, 2011, 2014

Global warming potential (GWP),
land use, energy volumes, migration

USD

Global Resource Accounting
Model (GRAM)

World
(62)

48 2000, 2004 CO
2
 emissions, material extraction,

value-added, and employment
IDE-JETRO Asia-Pacific

(8: 1975)
(10: 1985–2005)

56 (1975);
78 (1985–1995);
76 (2000, 2005)

1975–2005 Employment matrices (2000, 2005) YEN

Food and Agriculture
Biomass Input-Output
Model (FABIO) ‡

World
(192 = 191+1RoW)

118 processes and 125
commodities

1986–2013 NA Tonnes,
Heads

monetary values in the MRIO tables to physical or virtual
footprint flows among sectors and countries based on
independent data on the national price per physical unit of certain
products, and on the physical resource or environmental intensity
(e.g., CO2 emissions in tons per monetary unit) by country and
industry sector (Shapiro 2020). In recent years, research has been
extended from not just environmental indicators, but also
incorporated social indicators (e.g., employment, child labor, and
gender pay gap) to assess the social risk embedded in products
and services (Alsamawi et al. 2017b, Xiao et al. 2017, Wiedmann
and Lenzen 2018, Malik et al. 2021a). MRIO analysis is suitable
for macro-scale virtual flow analysis, and the data are broadly
available at the global scale. Table 2 summarizes a list of widely
used MRIO databases, detailing country, sector, and year
coverages, as well as the associated satellite accounts available for
use. Some countries, such as the U.S. and China, have subnational
MRIO tables (i.e., IO between various sectors of multiple regions
in a country). MRIO is more suitable for mapping virtual flows
at the aggregated sector level or economy level but is usually not
suitable for a single product.  

(2) LCA was initially developed in the 1970s to estimate
environmental impacts associated with a product throughout its
life cycle (ISO 2006, Guinée et al. 2011, Crawford et al. 2018).
Starting in the 2000s, social-LCA was proposed and developed
to assess the social and sociological impacts (e.g., human rights,
health, and safety) of products along the life cycle (Andrews et
al. 2009, Guinée et al. 2011). LCA is a more comprehensive, high-
resolution, and flexible approach compared to the MRIO
approach. Combined with trade flow data, virtual flows of
footprints at both macro-scale (e.g., national level) and micro-
scale (e.g., corporation level and individual people level) can be
quantified (Xu et al. 2020b, Malik et al. 2021b, Zhao et al. 2021a).
Fig. 5 provides an example, illustrating the system boundaries and

functional units for the LCA of irrigated agricultural production.
In this example, carbon, energy, nitrogen, and water footprints of
producing per unit of winter wheat can be calculated through the
LCA method in combination with unit process parameters (Xu
et al. 2020b).  

LCA is a flexible approach, and the complexity varies depending
on the specific processes considered and the desired outcomes.
Rigorous LCA relies heavily on data collection, either from onsite
investigation and laboratory tests (Tu et al. 2021), or through
questionnaire surveys and literature reviews (Poore and Nemecek
2018). Yet, data needs can be reduced significantly and replaced
by properly calibrated models. For example, the water footprint
from crop production can be estimated by using crop
evapotranspiration models because crop evapotranspiration
dominates water use for food production (Xu et al. 2020b, Tamea
et al. 2021). Furthermore, conducting LCA studies necessitates a
clear definition of appropriate system boundaries, because
different system boundary settings may result in very different
results (Malik et al. 2021b). Scholars have developed several
powerful LCA tools (e.g., Carbon calculator, GREET,
GHGenius, GaBi, SimaPro, OPENLCA, Brightway2; Fig. S3),
which make LCA a key approach for virtual flow quantifications.

In practice, because of data limitations, MRIO and LCA scholars
tend to use fixed parameters by either borrowing average figures
from global-scale studies or parameters that were examined in
other regions at a certain time, which ignored the spatial and
temporal heterogeneity in the parameters. Accurate estimations
should further consider spatial variability (given the heterogeneity
in climate, soils, resource endowment, and other production
conditions) and temporal variability (Hoekstra 2017, Poore and
Nemecek 2018).
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 Fig. 5. An example of quantifying virtual flows of water, energy, nitrogen (N), and CO2 embedded in food trade by using life cycle
assessment (LCA) of irrigated agricultural production. S – sending system, R – receiving systems. The subplot of LCA is adapted
from Xu et al. 2020b.
 

Method integration for addressing complex interactions among
multiple flows
In this section, we summarize the key methods used for
quantifying each type of flow, and, particularly, we highlight the
new approaches, such as the use of big data and crowdsourcing,
for addressing data accessibility barriers. For instance, most of
the trade flows at national or regional levels were quantified by
using statistical data (Fig. 4), while unconventional or illicit trade
data (e.g., trafficking of humans, wildlife, and drugs) are usually
not accessible. The crowdsourcing approaches provided a way to
collect relevant data and address the data gap. In addition, the
prevalent use of mobile phones and social media data offers rich
and high-resolution geotagged and time-stamped data for
modeling human flows (e.g., tourism) and disease transmission.  

Importantly, given that multiple flows can be interrelated among
associated systems, there is a great need to synthesize diverse data
and multiple methods to address real-world sustainability
challenges. For instance, Xu et al. (2019) combined trade statistics
and input-output analysis, and examined six types of global flows
(i.e., virtual water, energy, CO2, nitrogen, land, and financial
capital flows) and found that most of these flows tended to
enhance each other through synergistic effects. McSweeney et al.
(2018) integrated field data, news media data, and consolidated
counterdrug database, and revealed the linkages between illicit
capital flow, drug trafficking, and land grabbing (McSweeney et
al. 2018). We also encourage future research to draw insights from
the method portfolio presented here and move beyond examining
a single flow. Instead, researchers should investigate the complex

relationships, such as amplification, offsetting, and spatial
overlaps, among multiple flows to gain a more comprehensive
understanding of the interactions and potential impacts among
systems (Liu et al. 2015a).

IMPLICATIONS OF TRANSBOUNDARY FLOWS FOR
GLOBAL SUSTAINABILITY GOVERNANCE
In an increasingly metacoupled world, actions (e.g., new policies
and initiatives) and changes (e.g., natural and social shocks) in
one place can generate positive or negative impacts on other places
through various flows (Sachs et al. 2017, Liu et al. 2018b, Li 2021,
Zhao et al. 2021b, Chung and Liu 2022). It is thus critical to
evaluate and manage the transboundary flows across scales,
organizational levels, and over time. Transboundary flows are
particularly challenging for governance and addressing
sustainability issues as they usually involve multiple states or
multilateral governing authorities and regimes (Munroe et al.
2019, Newig et al. 2019). Stakeholders under different governing
systems can have very different interests and goals. The typology
and methodology of transboundary flows we developed under
the metacoupling framework can help to promote system thinking
and multidisciplinary approaches to identify the potential
challenges and opportunities for sustainable development across
regions. Previous studies have provided in-depth conceptual
structuring of telecoupling governance (Newig et al. 2019, 2020),
as well as insightful discussions on transboundary governance in
land systems and food systems (Eakin et al. 2017, Munroe et al.
2019). Drawing upon these conceptual foundations, the focus of
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 Fig. 6. Shocks that impact transboundary flows and the metacoupled systems. S – sending system, R – receiving systems, Sp –
spillover system. The graph exemplifies the impacts of climate change on reducing food production in the sending system, on
disrupting food transportation (e.g., port infrastructure and shipping), on changing demands in the receiving systems, and
potentially on changing the food trade flows between the receiving system and the spillover system (assuming the shock has little
impact on Sp).
 

this section is to explore how the typology and methodology of
transboundary flows can help address emerging challenges, such
as the increasing incidence of shocks, through the application of
system modeling and scenario analysis.

Growing shocks to transboundary flows
Changing climate (e.g., global warming, extreme climate events),
emerging global pandemics (e.g., COVID-19), growing conflicts
(e.g., Russia-Ukraine war), and volatile international relations
(e.g., the US-China Trade war) have threatened the sustainable
delivery of many flows (e.g., products, and tourism) and global
sustainability (Fig. 6). The impacts of these shocks have also
become unprecedentedly prominent as the world becomes more
interconnected and interdependent (Viña and Liu 2022).  

Shocks can impact transboundary flows in various ways, which
can be examined by the flow attributes (i.e., type, magnitude,
direction, distance, time, and mode). For directional flows,
shocks to sending systems can reduce the supplies for outflows,
and shocks to receiving systems can alter inflows (Fig. 6). Certain
types of flows (e.g., food flows and water flows) can be more
vulnerable to shocks than others. Taking climate change-related
shocks as an example, research has revealed that each degree-
Celsius increase in global mean temperature would reduce global
yields of maize by 7.4%, wheat by 6.0%, rice by 3.2%, and soybean
by 3.1% (Zhao et al. 2017), and a large reduction in major food
production regions could trigger systemic disruption: the soaring
price of agricultural products and erratic food supply chains
(Puma et al. 2015). Extreme climate also alters the magnitude of
biophysical flows (e.g., water flows) and causes disasters (e.g.,
flooding and drought), threatening coupled human and natural
systems. Furthermore, extreme climate can impact flow modes

by disrupting transportation infrastructures/pathways. Research
shows that 86% of ports globally are exposed to more than three
natural hazards, potentially affecting global maritime trade flows
(Verschuur et al. 2023).  

One shock can impact multiple flows simultaneously. The
outbreak of epidemics (e.g., the recent COVID-19 pandemic)
blocked more than 90% of the international human flows in early
2020 (Muhammad et al. 2020), and also generated severe negative
impacts on global supply chains (Guan et al. 2020, Falkendal et
al. 2021). Another example is the recent Russia-Ukraine war.
More than 9.1 million cross-border refugees have left Ukraine
(UNHCR 2022), and the war has also disrupted global flows of
vital commodities such as food, energy, and fertilizer (Puma and
Konar 2022, Tollefson 2022), which are expected to further affect
global biodiversity and the environment (Liu et al. 2022b).
Related studies on the Syrian civil war revealed that refugees
fleeing can have unexpected impacts on transboundary water
flows (Müller et al. 2016) and aggravate host countries’ water
stress even with more increased inflow of transboundary water
(Bertassello et al. 2023).  

Evaluating these growing shocks and their potential entwined
impacts by collectively examining multiple interrelated flows and
changes in their attributes can help stakeholders get a holistic
picture and adopt system modeling to address transboundary
sustainability challenges.

System modeling and scenario analysis for understanding
dynamic flows and metacouplings
In the metacoupled Anthropocene, system interactions have
become more complex than ever because of the growing number
of flows among interlinked systems. Network analysis is useful
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 Fig. 7. Scenario analysis for investigating dynamics of transboundary flows (left), and system sustainability under the UN
Sustainable Development Goals (SDG) framework (right). S – sending system, R – receiving systems, Sp – spillover system.
 

for visualizing the complex interactions between multiple flows
and multiple systems (Sonderegger et al. 2020, Berfin Karakoc
and Konar 2021, Carlson et al. 2021), but is not sufficient for
understanding and modeling system dynamics. Nexus approaches
were highlighted to be highly useful in uncovering synergies,
detecting harmful trade-offs among multiple sectors, and
unveiling unexpected consequences (Liu et al. 2018b). To
implement nexus approaches, it is especially critical to adopt
system modeling to simulate nexus dynamics and get a
quantitative understanding of the changes in flows and dynamics
of systems. Particularly, we recommend the integration of
multidisciplinary flow models and scenario analysis for
simulation. Scientists can work with multi-stakeholders to
develop various scenarios. In addition to the common practice of
including socioeconomic development and climate scenarios
(Zhao et al. 2021a), shocks on transboundary flows can also be
included in developing scenarios by changing various flow
attributes. For instance, shocks can lead to different degrees of
trade disruption. It would be better for countries or regions that
rely on trade for goods and services to test the extent to which
trade disruption might impact the supply for domestic needs.  

Given the broad impacts each scenario might generate on a
system’s sustainable development, the global indicator framework
for the Sustainable Development Goals (SDGs) proposed by
United Nations (UN 2019) can be particularly helpful in
providing a set of indicators for cross-sector or cross-region
comparison (Fig. 7). A fully integrated global social-
environmental model, the Global Biosphere Management Model,
has shown great potential for application in global and regional
agricultural trade and impact assessment (Havlík et al. 2018). For
other types of flows, such as water and energy flows, the
corresponding flow models can also be integrated with scenario
analysis for simulations (Munia et al. 2020, Vinca et al. 2021).
Although scenario analysis has often been criticized for not being
able to be validated, it is still useful for guiding policy making by
revealing potential impacts. Not aiming at predicting the future,
the analysis rather provides a big picture of what to avoid and
how to prepare for and adapt to an uncertain future.

Enhancing global metacoupling governance with flow typology
In a metacoupled world, it is short-sighted to say that problems
are caused and are to be solved where they occur (i.e., place-based
governance or territorial-based governance; Sikor et al. 2013,
Hoekstra and Wiedmann 2014, Eakin et al. 2017, Liu et al. 2018b,
Munroe et al. 2019). Such place-based governance might lead to
well-intended but unexpectedly ineffective policy results. For
instance, only focusing on emission targets within one country
might lead to the displacement of carbon-intensive industries to
other countries with lax environmental standards, resulting in
“carbon leakage” (Xu et al. 2020a). Therefore, there is an
increasing need for further facilitating flow-based governance,
which considers governance in a place in light of its relationships
with other places by tracking and managing where flows start,
progress, and end (Sikor et al. 2013, Liu et al. 2018a). Existing
literature has provided insightful discussions on the theoretical
and conceptual structuring of telecoupling governance (Newig et
al. 2019, 2020), as well as the role of multi-stakeholders (Munroe
et al. 2019). However, knowledge deficits in tracing flows are still
the foremost challenge in telecoupling governance (Newig et al.
2020). A recent review paper particularly calls for developing a
common language to study how telecoupling (a subset of
metacoupling) can be governed toward sustainability (Cotta et
al. 2022). Metacoupling governance should integrate telecoupling
governance (between distant places), traditional place-based
governance (within a focal place), and governance of human-
nature interactions between adjacent places (Liu 2023).  

The flow typology presented in this study is, therefore, timely and
crucial in bridging these gaps. First, a portfolio of flow types needs
to be identified when approaching transboundary governance.
Research has found that existing studies have largely focused on
a few flows, such as the trade of consumer-facing commodities,
while other types of flows remained under researched, even
though they have substantial environmental impacts (Cotta et al.
2022). Taking multiple related flows into consideration would
facilitate all parties to negotiate on diverse interests in order to
reach common interests that underpin joint solutions to

https://www.ecologyandsociety.org/vol28/iss3/art19/
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metacoupled sustainability issues. Taking a transboundary
watershed system as an example, the watershed governance needs to
consider closely interlinked flows (e.g., flows of surface water,
groundwater, sediments, and wastewater; food flows, fertilizer
runoff, and energy flows; Fig. 8) and engage stakeholders from
multiple sectors (UNEP-DHI and UNEP 2016, Müller et al. 2017,
Avisse et al. 2020, Vinca et al. 2021). Second, once flows are
identified, the collection of methods can be used for quantitatively
measuring flow magnitude, and understanding how flows’ other
attributes change over time and across distance. This would be key
to evaluating the associated socio-environmental impacts, and
would help multi-stakeholders balance trade-offs and develop
governance arrangements to tackle these interlinked challenges.

 Fig. 8. Multiple interconnected flows across a transboundary
river basin. Regions within a river basin are linked through their
use of the water (for hydropower, domestic water use, and
irrigation), and the impacts they cause through development and
pollution (e.g., wastewater, agricultural nutrients, sediments, and
aquatic biodiversity loss). Partly adapted from UNEP-DHI and
UNEP 2016.
 

Moreover, flow-based governance must recognize and address the
new and uncertain risks posed by increasingly frequent and
destructive global shocks. As the world becomes more
interconnected, vulnerability to global shocks increases (Viña and
Liu 2022). Current system governance tends to focus on maintaining
and enhancing a few key flows in supply chains to be efficient for
short-term sustainability. However, the whole system could be
susceptible to unexpected shocks to these key flows. Preserving and
promoting proper redundancy and diversity of the flows within the
system can improve system resilience (Puma et al. 2015). To increase
resilience and adaptability, there is a need to enhance metacoupling
governance by integrating multidisciplinary flow models and
utilizing system modeling tools as a practical approach to
comprehending the complex consequences brought about by
alterations in transboundary flows.

CONCLUSION
Transboundary flows are a key component in the metacoupling
framework, as they connect focal, adjacent, and distant systems.
Governance of transboundary flows is inherently challenging. To
address the complexity and challenges, we made a first attempt
to characterize them in different dimensions (e.g., type,
magnitude, direction, distance, time, and mode), and highlighted
practical methodologies for characterizing them. Tracking and
quantifying transboundary flows have profound implications for
achieving co-benefits and minimizing trade-offs across sectors
and places. Governing transboundary flows should recognize the
shared risks and goals, use system thinking, and enhance
multilateral cooperation. To achieve global sustainability in the
Anthropocene, transboundary flows must be explicitly
recognized and systematically characterized in sustainability
research and governance so that effective policies and practices
can be developed and implemented to safeguard humankind and
its planetary support systems.
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APPENDIX 1 

 

Systematic review  

Literature search strategy 

Searching for relevant literature was conducted in the Web of Science (WOS) Core Collection, 

and we followed the general principles by PRISMA (Preferred Reporting Items for Systematic 

Reviews and Meta-Analyses) guidelines for this study (Fig. S1) (Page et al., 2021). The master 

search strategy was run in WOS from inception to March 1, 2023. Search results were imported 

to and analyzed in Covidence, which is a web-based software platform that streamlines the 

process of title/abstract screening, full-text screening, data extraction, and keeping track of work 

when conducting a systematic review. Duplicates were eliminated using the Covidence build-in 

function. Subsequently, three authors (Y.L., N.J., and X.Y.) screened all the literature first by 

title and abstracts, and then the full texts according to the eligibility criteria. Finally, five authors 

(Y.L., N.J., X.Y., N.M., and X.L.) extracted flow attributes and other associated data from 

literature using Covidence.  

 

Screening criteria 

We only included original research articles published in peer-review journals written in English. 

Titles and Abstracts were screened for potential relevance by three authors independently. We 

excluded studies if they were:  

1. Reviews, editorials, book chapters, letters, short communications, conference 

proceedings, and meeting abstracts.  

2. Not original empirical studies. 

3. Not in English.  

4. Unrelated topics (were not relevant to metacoupling/telecoupling, or did not examine 

transboundary/interregional flows).  

During our evaluation of the full texts, we excluded those studies that mentioned flows but did 

not conduct any flow-related analysis. We included studies that used either quantitative or 

qualitative approaches.  

 



 
Fig. S1. The literature screening process based on the PRISMA workflow (Page et al. 2021).  

 



 
Fig. S2. The organizational levels commonly used for transboundary flow analysis and their 

corresponding data availability.  

 

 

 

 



 
Fig. S3. LCA tools, Carbon calculator, GREET (Greenhouse gases, Regulated Emissions, and 

Energy use in Transportation), GHGenius (focus on transportation fuels in Canada), GaBi 

Software, SimaPro, OPENLCA, Brightway2. Credits to Dr. Qingshi Tu at the University of 

British Columbia.   
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