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A big data approach to assess progress towards
Sustainable Development Goals for cities of
varying sizes
Yu Liu1, Bo Huang 1,2,3✉, Huadong Guo 4,5 & Jianguo Liu 6

Cities are the engines for implementing the Sustainable Development Goals (SDGs), which

provide a blueprint for achieving global sustainability. However, knowledge gaps exist in

quantitatively assessing progress towards SDGs for different-sized cities. There is a shortage

of relevant statistical data for many cities, especially small cities, in developing/under-

developed countries. Here we devise and test a systematic method for assessing SDG pro-

gress using open-source big data for 254 Chinese cities and compare the results with those

obtained using statistical data. We find that big data is a promising alternative for tracking the

overall SDG progress of cities, including those lacking relevant statistical data (83 Chinese

cities). Our analysis reveals decreasing SDG Index scores (representing the overall SDG

performance) with the decrease in the size of Chinese cities, suggesting the need to improve

SDG progress in small and medium cities to achieve more balanced sustainability at the (sub)

national level.
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The Sustainable Development Goals (SDGs)1 adopted by all
members of the United Nations call for concerted efforts to
achieve global social, economic, and environmental well-

being. National governments have demonstrated strong com-
mitment to the SDGs, but cities are critical actors in imple-
menting the sustainability agenda—an estimated 65% of the 169
targets underlying the 17 SDGs require city engagement2. As the
centre of social and technological innovations, cities will continue
to drive the achievement of the SDGs3. Nevertheless, rapid urban
development has also introduced pressing social and environ-
mental problems—such as various inequalities4, air pollution5,
and a lack of infrastructure6—all of which threaten city prospects.
Thus, local municipal governments globally are integrating the
SDGs into their development plans to address these challenges
and participate in a global dialogue7,8.

Implementing and achieving the SDGs requires measuring and
assessing progress in different contexts and determining devel-
opment priorities. Quantitative assessments of SDG progress have
been undertaken at the global9,10, regional11, national12, and
subnational13 levels by various government and nongovernment
organisations. Among them, the SDG Index score (arithmetic
mean of 17 individual SDG scores) has been highlighted as useful
for comparing the overall SDG performance of different countries
and provinces. The indicator framework and systematic methods
arising from such research are essential for understanding SDG
progress and the actions to take next14, which should be com-
municated to the intended target audience in a way that is easy to
interpret15. At the city level, from 2016 to 2021, nearly 80
voluntary local reviews were submitted by city governments in
different countries to report their progress16, while most of these
reviews focused on status descriptions and governance arrange-
ments regarding the SDGs and offered little in terms of setting
baselines or evaluating progress towards SDG targets. Trans-
forming the SDGs and their targets into a data-driven manage-
ment tool to quantify progress is crucial for formulating evidence-
based strategies and refining resource allocation11. However, only
some large cities or capital cities/provincial capitals have mea-
sured their progress towards 15 or 16 of the 17 SDGs2,17. Large-
scale sustainability assessments of all 17 SDGs for all cities of
varying sizes in a specific country are still limited. The shortage of
relevant statistical data in many cities in developing and under-
developed countries has worsened the situation. Among the cities
at the prefecture level or higher in China, the number of small
cities and their total land area are larger than those of large cities,
but small cities face a more serious data shortage problem (see
details in Table S5), thereby hindering the development of holistic
strategies for promoting city sustainability. Thus, there is an
urgent need to develop systematic methods to address the
shortage of relevant statistical data in quantifying city-level pro-
gress towards SDGs, especially for small cities.

The wide availability of big data with five important char-
acteristics (large amount, fewer properties, high data generation
speed, great variety of data formats and sources, and high eco-
nomic benefits)18 provides tremendous opportunities to monitor
SDG progress. This capability has been highlighted for indicators
and targets in SDG assessment studies19,20. More than a quarter
of the publications pertaining to SDG assessment using big data
have focused on the indicator (target) monitoring of SDGs 1.1.1
(the international poverty line), 1.1.2 (national poverty lines),
6.6.1 (water-related ecosystems), and 15.3.1 (degraded land),
which underlie SDGs 1 (no poverty), 6 (clean water and sanita-
tion), and 15 (life on land)21. Multiple types of big data (e.g.,
nighttime light (NTL) satellite imagery, point of interest (POI)
data, and OpenStreetMap data) have been integrated to construct
a variety of monitoring indicators that reflect the current status of
cities in a timely and efficient way to help assess the SDGs. The

same big data can also be applied to monitor multiple SDGs. For
example, NTL satellite imagery was used not only to represent
economic growth (SDG 8)22 but also to map poverty (SDG 1)23

and estimate inequality (SDG 10)24. On the other hand, machine
learning models—including random forest25, boosted regression
trees26, and artificial neural networks (ANNs)27—have been used
in monitoring processes to improve evaluation efficiency21.
However, these studies have focused only on the assessment of
one or a few indicators (targets) of a specific SDG, and they have
lacked an overall consideration of multiple SDGs. A compre-
hensive evaluation is a fundamental step for identifying the
priorities that cities should pursue in implementing the SDGs.
Therefore, it is necessary to integrate multisource big data and
machine learning models into the overall assessment of SDGs.

In response, this study constructed a generic indicator system
using open-source big data and developed an ANN model to
efficiently assess the overall SDG progress for cities of varying
sizes (Fig. S1). The proposed systematic methods are not limited
to investigating the city-level SDG Index in China and can also be
applied to other countries with appropriate adjustments. In detail,
for 254 Chinese cities with relatively sufficient statistical data, we
first evaluated their performance of 17 individual SDGs and the
SDG Index with 54 statistical data indicators (details are available
at the figshare repository28). Then, the individual SDG scores
were used to select the most suitable big data monitoring indi-
cators for the generic indicator system, and the SDG Index scores
were used as the expected output to train the ANN model.
Finally, we applied the developed ANN model to evaluate the
SDG Index for 83 Chinese cities with a severe lack of relevant
statistical data. Overall, this study assessed the SDG Index for 337
cities at the prefecture level or above in China in 2017 with
multisource and low-cost big data and compared the varying
sustainability of cities with different population sizes, spatial
locations, and income levels. Evidence-based policy recommen-
dations were provided for cities to optimise their development
paths and achieve the SDGs in accordance with local contexts.

Results
City-level individual SDG performance. Figure 1a shows the
average performance of 254 Chinese cities—including large,
medium, and small cities (see classification in Table S3)—
regarding each SDG. Although large cities showed relatively
better performance on most individual SDG scores, they also
faced challenges in reducing income inequalities and increasing
global partnerships, parts of SDG 10 (reduced inequalities) and
SDG 17 (partnerships for the goals), respectively. Compared with
large cities, small and medium cities performed better on SDG 15
(life on land), although they still scored poorly. Large and med-
ium cities showed similar performance regarding SDG 13 (cli-
mate action) and scored higher than small cities. In terms of the
five critical SDG dimensions, most cities did not make particu-
larly good progress in the dimension of peace (SDG 16) and faced
a challenge in forming partnerships (SDG 17). In contrast, Chi-
nese cities performed well in the planet dimension, particularly in
terms of clean water popularisation (SDG 6) and waste discharge
and treatment (SDG 12), scoring more than 77 on average.
Regarding the people and prosperity dimensions, most cities
achieved better gender equality (SDG 5) and energy production
and consumption (SDG 7) but needed to invest more effort into
improving medical equipment (SDG 3), transportation networks,
and technological innovations (SDG 9), and coordinated devel-
opment (SDG 10).

The performance of cities located in different regions regarding
each SDG can be found in Fig. 1b–e. Eastern cities (e.g.,
Shenzhen) performed better on most of the SDGs but scored the
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Fig. 1 Comparison of average individual SDG scores for different city groups. a City size. b–e Spatial location. Five critical dimensions of the 2030
Agenda: people, prosperity, planet, peace, and partnership. A total of 254 cities were involved, and their average individual 17 SDG scores were calculated
according to their size (large, medium, or small) and spatial location (eastern, central, northeastern, or western). For each subgraph, thicker lines represent
higher scores.
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lowest on SDG 14 (life below water) due to the poor water quality
in coastal waters. Improved by the reform and opening-up policy,
eastern coastal cities also showed better performance on SDG 17
(partnerships for the goals) due to their open and inclusive
foreign investment environment, and they experienced rapid
economic development (SDG 8) and gradually improved
infrastructure (SDG 3, SDG 4, and SDG 9). Central cities
performed better on energy consumption (SDG 7 and SDG 12),
while northeastern cities scored the highest on SDG 2 (zero
hunger) due to their fertile agricultural lands. Western cities
scored lower on urban sustainability because of their limited
ecological assets (SDG 15), inadequate educational facilities (SDG
4), and lower levels of external communication (SDG 17).

In terms of the indicator scores for individual SDGs (details are
available at the figshare repository28), most cities performed well
in drinking water popularity, gas popularity, and domestic waste
disposal, relevant to SDG 6 (clean water and sanitation), SDG 7
(affordable and clean energy), and SDG 12 (responsible
consumption and production). However, many cities met
challenges regarding road network construction and highway
transportation, relevant to SDG 9 (industry, innovation, and
infrastructure) and SDG 11 (sustainable cities and communities),
with lower average normalised indicator scores across all 54
indicators. Regarding the indicators related to research and
patents, parts of SDG 9 (industry, innovation, and infrastructure),
large cities performed better than small and medium cities. For
SDG 4 (quality education), a difference existed in the indicator
pertaining to higher education in different-sized cities, but the
compulsory education indicators performed similarly.

Harnessing big data to assess the SDGs with an ANN model.
To obtain more comprehensive and accurate evaluation results,
we constructed a variety of indicators using open-source big data

for each SDG and conducted a correlation analysis with the
individual SDG scores calculated using statistical data (see details
in the Supplementary Methods section). Finally, 18 big data
monitoring indicators were selected to assess the SDGs
(Table S1). As shown in Fig. 2, the 18 big data monitoring
indicators were highly correlated with their corresponding indi-
vidual SDG scores at the 0.05 significance level and partially
correlated with the other individual SDG scores. Except for SDG
15, which was calculated with the same indicators as before, the
correlation between the NIC (nighttime light intensity of con-
struction land) and the SDG 8 score was the highest (0.621). For
multiple indicators monitoring the same SDG, the DME (density
of existing manufacturing enterprises on construction land) and
DRE (density of existing research enterprises on construction
land) were significantly correlated with the SDG 9 score, and the
Pearson correlation coefficients were 0.462 and 0.574,
respectively.

Using the same evaluation methods as those applied to the
statistical data, we calculated the SDG Index scores for 254 cities
based on the big data monitoring indicator framework (see details
in the Supplementary Results section). Although the evaluation
results using two different data types were relatively highly
correlated, the accuracy of our evaluation results using big data
could still be improved. Hence, we developed an ANN model
using the 18 big data monitoring indicators to assess different-
sized cities’ progress towards SDGs (see details in the Supple-
mentary Results section). The low value of the root-mean-square
error (RMSE= 3.13) and the high value of the coefficient of
determination (R2= 0.7625) for the test set (Fig. 3d) indicate the
better performance and higher accuracy of the trained ANN
model. In contrast to collecting and calculating 54 statistical data
indicators to measure the SDG Index scores of the different-sized
cities, we provide a way of using only 18 big data monitoring
indicators and a trained ANN model with comparable evaluation

Fig. 2 Correlations of individual SDG scores with big data monitoring indicators. Each cell colour represents its Pearson correlation coefficient. * and **
denote the 0.05 and 0.01 significance levels, respectively. The SDG Index score and 17 individual scores were calculated using statistical data, and the
sample included 254 cities, as in the previous section. For details on the acronyms of these big data monitoring indicators, see Table S1.
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accuracy. Our results prove that big data can be used as a
comprehensive and representative data source to monitor
progress towards SDGs independently, and the developed
assessment method is superior to the previous method using
statistical data in terms of efficiency, availability, and cost.

Fig 3a–c show the spatial distribution of the expected output,
actual output, and errors for the trained ANN model, and Table 1
shows its performance for cities in different groups. The results
suggest that the ANN model can be used to accurately assess the
SDG progress for different-sized cities, not just the large cities
that are the subject of existing SDG assessment reports2,17. For
equitable and harmonious global development, small and
medium cities should also be assessed for their progress towards
SDGs. The best performance of the ANN model was found in
high-income cities, with the lowest mean absolute error (MAE)
(1.370) and the highest correlation (R) (0.939).

City-level SDG Index performance. Instead of focusing on the
subtle differences between the two SDG Index scores derived
using statistical data and big data, it may be more important to
consider the performance of cities under the same indicator
framework. Since the trained ANN model performed well in cities
with different sizes, economic levels, and geographical locations,
we used it to calculate the SDG Index scores for 83 other
prefecture-level cities that lacked relevant statistical data.

Figure 4a shows the spatial distribution of the SDG Index
scores of all 337 cities at the prefecture level or higher (excluding
the newly established Sansha City) using big data monitoring
indicators and the developed ANN model. We found that higher
SDG Index scores were present in Eastern China, especially the
coastal regions in Guangdong Province, Zhejiang Province, and
Jiangsu Province, which formed a high-value agglomeration area,
while the SDG Index scores of western cities were relatively lower,
especially for cities in Tibet and Qinghai Province. Provincial
capital cities in the central region performed better on the SDG

Table 1 ANN model performance for cities in different
groups.

City groups MAE RMSE R

Large cities 1.676 2.270 0.899
Medium cities 1.809 2.256 0.822
Small cities 2.000 2.562 0.852
Eastern cities 1.935 2.446 0.845
Central cities 1.765 2.371 0.851
Western cities 1.651 2.133 0.889
Northeastern cities 2.116 2.615 0.737
High-income cities 1.370 1.988 0.939
Upper-middle-income cities 1.919 2.418 0.815
Lower-middle-income cities 2.002 2.562 0.890

Fig. 3 Proposed ANN model performance. a SDG Index scores for 254 cities (statistical data). b SDG Index scores for 254 cities (ANN model using big
data). c Difference between the two SDG Index scores for 254 cities. d Correlation results (training, validation, test, and entire sets) for the ANN model.
The base map in Fig. 3a–c was downloaded from the Resource and Environment Science and Data Center (https://www.resdc.cn/Datalist1.aspx?
FieldTyepID=20,0). The background map in Fig. 3a–c is the online basemap (World Hillshade) of ArcGIS Pro software from Esri (https://www.arcgis.
com/home/item.html?id=1b243539f4514b6ba35e7d995890db1d).
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Index, especially Changsha City, Wuhan City, and Zhengzhou
City, all of which ranked in the top 15. For the northeastern
region, cities in Liaoning Province performed better than those in
Heilongjiang Province. Overall, in most provinces, provincial
capital cities rather than other prefecture-level cities tended to
have higher SDG Index scores.

Fig 4b–d show the distribution of the SDG Index scores
according to the different group information across 337 cities in
China. Regarding the cities located in different regions, the

median SDG Index score in the eastern region was the highest
(50.13), followed by that in the central (46.90), northeastern
(43.77), and western (41.31) regions. The SDG Index scores of
the cities were more evenly distributed in the northeastern
region, concentrated around the median in the eastern region,
and more concentrated in the third quartile (Q3) in the western
region. In terms of different city sizes, the average SDG Index
score of the large cities was the highest (49.66), followed by that
of the medium (46.50) and small cities (42.10). The distribution

Fig. 4 Comparison of SDG Index scores for different city groups. a Spatial visualisation of the SDG Index scores of 337 cities. b Cities in different regions.
c Cities of different sizes. d Cities with different income levels. For the classification standard, see Tables S2-4. The violin plots show the distribution,
minimum, maximum, and median SDG Index scores for different city groups. The box plots show the maximum, first quartile (Q1), median, third quartile
(Q3), and minimum levels of the SDG Index scores for the different city groups. The base map in Fig. 4a was downloaded from the Resource and
Environment Science and Data Center (https://www.resdc.cn/Datalist1.aspx?FieldTyepID=20,0). The background map of Fig. 4a is the online basemap
(World Hillshade) of ArcGIS Pro software from Esri (https://www.arcgis.com/home/item.html?id=1b243539f4514b6ba35e7d995890db1d).
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of the SDG Index scores for the medium cities was more
balanced, while that of most small cities was comparatively
lower. The SDG Index scores showed differences across cities
with varying income levels. Specifically, the median SDG Index
score of high-income cities was more than 50, while that of
lower-middle-income cities was less than 40. More lower-
middle-income cities than high-income and upper-middle-
income cities had SDG Index scores around and below the third
quartile (Q3). Overall, large cities with high-income levels
located in the eastern region had higher SDG Index scores (the
average and median were 53.92 and 54.42, respectively), which
is corroborated by Fig. 4a.

Discussion
Addressing development challenges and making notable SDG
progress in different-sized cities require quantitative evaluations3.
We quantify the performance of 17 individual SDGs for 254 cities
with statistical data and assess the SDG Index for all 337
different-sized cities with open-source big data. The developed
evaluation methods lay a solid foundation for United Nations
members to assess the city-level performance of SDGs. At the
same time, the assessment results provide a scientific reference for
Chinese cities to achieve sustainability.

Specifically, big data with high availability provide a timely and
reliable initial assessment of SDGs, which helps cities of varying
sizes detect development challenges as early as possible. In con-
trast to integrating a series of global composite indexes to esti-
mate the SDG Index29, this study used multisource and low-cost
big data to construct simple but representative indicators for
individual SDGs and then developed an ANN model to estimate
the SDG Index score, which can help governments at all levels
monitor and evaluate SDG progress, especially cities that have
limited statistical data availability and weak big data processing
capabilities. Compared to traditional statistics, constructing big
data monitoring indicators can save considerable human effort
and financial costs since all big data used in this study are publicly
available and most of them are globally available. To make
assessment results more suitable for local situations, cities in
other countries can use other open-source big data (e.g., land use
data from GlobeLand3030) as a supplement or alternative to
construct the big data indicator system of SDGs and apply local
assessment results with statistical data as the expected output to
train the ANN model. In addition, unlike statistical data release
with a lag of at least one year (e.g., city-level statistical yearbook),
big data can reflect the strengths and weaknesses of urban
development in the current year, providing an initial direction
that cities should prioritise before formulating relevant policies
and allowing timely monitoring during the implementation per-
iod. Furthermore, although big data has been proven to be a
valuable alternative to statistical data for assessing the overall
SDG progress, indicators using official statistics can reflect more
detailed information about urban sustainability. Therefore, we
suggest using the big data indicator framework and associated
methods to conduct an overall assessment of SDGs to identify
development priorities and then combining relevant statistical
data (if available) for detailed analyses and targeted solutions.

A much faster and more ambitious governmental response is
needed to measure SDG performance, address local development
challenges, and achieve the SDGs by 2030. On the one hand,
more specific and frequent statistical data at the city or finer
scales are needed. The main data gaps for each SDG in Chinese
cities compared with the official SDG indicator framework pro-
posed by the United Nations were provided (details are available
at the figshare repository28). Taking SDG 3 (good health and
well-being) as an example, data on hospital beds and doctors that

relate to SDG 3.8 and SDG 3.c are commonly used to evaluate
medical conditions31, as is done in this paper, while data on the
prevalence of various diseases (e.g., HIV, tuberculosis, and
hepatitis B) related to other indicators of SDG 3 can only be
found at the provincial and national levels. Making these data
public is crucially important for improving health care databases
and allocating specialised medical facilities. Governments and
statistical departments can also pay more attention to unifying
the statistical method and calibre of indicators used in different
statistical yearbooks, such as the traffic death rate (an indicator of
SDG 3), net primary enrolment rate (an indicator of SDG 4), and
proportion of small-scale industries in total industry value added
(an indicator of SDG 9), which can only be collected in some
cities. On the other hand, we call for more powerful support in
building a long-term big data evaluation platform to promote the
achievement of the SDGs. Since 2015, many studies have quan-
tified SDG targets and indicators using multisource big data32,33;
however, different localised indicators for the same SDG target
and different spatiotemporal resolutions for big data (e.g.,
remote-sensing images) targeting the same SDG indicator
diminish the comparability and certainty of evaluation results34.
Based on enhancing cooperation among local governments,
academics, big data vendors, and those interested in city sus-
tainability, a possible route is to establish an SDG indicator
monitoring platform to automatically generate big data assess-
ment results on a regular basis (see details in the Supplementary
Discussion section). This platform could define a common set of
indicators, use public high-resolution big data, and provide
appropriate processing methods for others to follow.

From large to medium and then to small cities, the average
SDG Index scores calculated using both statistical data and big
data tended to decrease (Figs. 3 and 4). Factors such as positive
governmental support, rapid land urbanisation, and complete
infrastructure may promote the sustainable development of larger
cities. For instance, the results of the correlation analysis
(Table S6) showed that local financial expenditure per capita,
road network density, and the ratio of the urban land area to the
total land area significantly and positively affected the scores of
SDG 3 (good health and well-being), SDG 9 (industry, innova-
tion, and infrastructure), and SDG 17 (partnerships for the goals).
In fact, these three goals are the three worst-performing goals for
small cities and three of the top four goals with the largest gaps in
their average scores compared to large cities. The geographical
distribution of different-sized cities and urban scaling character-
istics may further exacerbate the score differences of these three
SDGs and the SDG Index13,35. More than half of the small cities
were located in the western region, while nearly half of the large
cities were concentrated in the eastern region (details are available
at the figshare repository28). Compared to western cities with
rugged topography and a far distance from the coast36, the
relatively level ground in Eastern China provides a vital condition
for the establishment of well-connected roads, further con-
tributing to the gathering of capital and talent and the develop-
ment of various industries (SDG 9)37. The implementation of the
reform and opening-up policy provided a massive chance for
eastern coastal cities (especially large cities such as Shenzhen City
and Zhuhai City) to attract foreign capital (SDG 17) and drive the
development of medical care (SDG 3) by increasing local financial
expenditures38. Urban scaling laws have been widely proven to be
applicable to cities in China35,39. Urban indicators related to
socioeconomic activities, such as GDP growth (SDG 8), mobile
phone and internet use (SDG 9), and foreign capital investment
(SDG 17), have superlinear relations with population size35,
indicating the increasing returns to scale effect of urban
indicators39. China achieved rapid urbanisation by prioritising
the economic and infrastructural development of large cities40,
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which have a greater ability to maintain growth due to their
superior resources (e.g., more urban construction land quotas)41.

To achieve more balanced city-level sustainability, it is neces-
sary to explore the central role of integrated socioeconomic
communities (e.g., metropolitan areas, urban agglomerations, and
economic belts) in driving the development of medium and small
cities42. As the core cities of urban agglomerations, one or more
large cities with advantages in location, political resources,
industries, and population size can support the development of
neighbouring small and medium cities through various means,
including establishing industrial cooperation and transfer
mechanisms, strengthening transportation links, and promoting
the flow of people and materials43. The rational division of
industries and functions between small, medium, and large cities
within integrated socioeconomic communities can lead to effec-
tive resource allocation and improve overall sustainability
through complementary advantages. At the same time, the for-
mation of integrated socioeconomic communities can reduce the
negative spatial externalities caused by intracity competition and
play a radiating role in promoting the development of sur-
rounding cities.

Moreover, the Chinese government should prioritise the SDGs
that lag behind others, especially SDG 10 (reduced inequalities),
SDG 15 (life on land), and SDG 17 (partnership for the goals).
More effective and powerful policies are needed to promote
holistic sustainability and advance SDG progress (see details in
the Supplementary Discussion section).

Conclusions. This study developed an ANN model with multi-
source and low-cost big data to efficiently assess different-sized
cities’ overall SDG performance. In this way, this study provides a
solid foundation for elaborating the important role of big data in
assessing progress towards SDGs, which can also be extended to
other countries and cities. The assessment results show that SDG
individual and Index scores varied across city sizes, geographical
locations, and income levels. Compared to large cities, small cities
(especially western cities) scored relatively low on the SDG Index.
Constructing integrated socioeconomic communities is a possible
solution to improve the development of small and medium cities
and promote the achievement of balanced sustainability at the
subnational level.

In the future, two focal points can facilitate the evaluation and
achievement of the SDGs. One is to encourage the government
and related organisations to increase investments and financial
support in SDG data and evaluation systems. Due to data
limitations, not all 17 SDGs were measured using appropriate big
data monitoring indicators, and the constructed city-level
indicator framework with statistical data still does not fully
reflect progress towards SDGs. The other is to suggest that
researchers explore the trade-offs and synergies of the SDGs at
the city level and integrate these interactions into the assessment
models. Although the SDG Index calculated using statistical data
provides a straightforward and easy-to-interpret way to identify
development priorities and compare the overall SDG progress at
different scales, its calculation methods lack the quantification of
interactions among the SDGs.

Methods
Calculation of individual SDG and SDG Index scores using statistical data. The
United Nations adopted more than 230 indicators to measure the 17 SDGs, but
most are defined globally or nationally. We developed a localised indicator fra-
mework with statistical data mainly considering a combination of the global
indicator framework for the SDGs and targets of the United Nations44, the SDG
Index and Dashboards Report 20189, the Sustainable Development Report 202110,
and China’s SDG progress assessment papers and reports at various
scales13,31,45–47. Recognising the importance of developing an indicator framework
covering all 17 SDGs for the city-level assessment48, we selected as many indicators

as possible for each SDG based on data availability and consistency in the statistical
calibre at the city level. Our indicator evaluation system includes 54 indicators, with
an average of 3 indicators for each SDG, and nearly 70% of the indicators can be
found in previous SDG progress reports and published papers (details are available
at the figshare repository28). Unlike the global sustainable development reports, we
selected indicators according to the SDG challenges facing China and the input
(e.g., food, energy, and water.) and output (e.g., innovation, technology, and
information) systems of prefecture-level cities. We then used data from local sta-
tistical sources for a more nuanced analysis to show the efforts of different-sized
cities in China in implementing and achieving the 17 SDGs.

We set the best performance (upper bound) and lower bound for each SDG
indicator to decrease the influence of extreme values. The rules for setting the SDG
upper and lower bounds were similar to those used in previous studies9,10,13. For
the SDG indicators that have significant ideal values or technical optimum values,
such as “gender equality” and “hazardous waste generated”, we used the
corresponding fixed quantitative value as the upper bound. The principle “leave no
one behind” has been used to determine the best way to access essential living
resources and basic infrastructures, such as drinking water and internet coverage.
For the other SDG indicators, we adopted the average top 5 performers as the
upper bounds. For all indicators, we used the value at the 2.5th percentile as the
lower bound. Since some SDG indicators are negative indicators, such as carbon
dioxide emissions per capita, a lower value represents better performance.

Next, the indicator for each SDG was normalised to a standard scale of 0 to 100
to increase the comparability among the SDGs.

Inij ¼ 100 ´
I0nij �mixðI0nijÞ

maxðI0nijÞ �mixðI0nijÞ
ð1Þ

where n, i, and j represent the indicator, SDG, and city, respectively. Inij is the
normalised score of indicator n under the ith SDG for city j. I0nij represents the raw
data value. maxðI0nijÞ and mixðI0nijÞ indicate the upper bound (best performance)
and lower bound (worst performance) of indicator n under the ith SDG,
respectively.

For the normalised indicator score, a higher score means better performance,
and a score of 100 represents the best performance of an indicator towards
achieving the SDGs. The indicator scores were assigned values of 100 or 0 if their
original performance was better than the upper bound or worse than the lower
bound, respectively.

Determining weights is key for achieving reliable evaluation results, but not
enough evidence is available to prove which method is the best9,10. Since each
indicator is equally important within each SDG and all 17 SDGs need to be
achieved in all counties9, all 17 SDGs were equally weighted in this study, and the
indicators of each SDG were equally and inversely weighted according to the
number of indicators belonging to that SDG. Finally, we calculated the 17
individual SDG scores and the SDG Index scores of 254 cities in China in 2017 to
measure urban engagement in achieving the SDGs.

The calculation of the 17 individual SDG scores is as follows:

Sij ¼ ∑
k

n¼1
ðwni ´ InijÞ ð2Þ

wni ¼
1
k

ð3Þ

where Sij is the ith SDG score of city j. k is the number of indicators under the
ith SDG.

wni is the weight of indicator n under the ith SDG.
The SDG Index scores can be calculated using the following equations:

SDGIj ¼ ∑
m

i¼1
ðWi ´ SijÞ ð4Þ

Wi ¼
1
m

ð5Þ

where SDGIj is the SDG Index score of city j, m is the total number of individual
SDG scores, and Wi is the weight of the ith SDG score.

To test the stability of the evaluation results, uncertainty and sensitivity analyses
for the SDG scores were also performed, and the detailed process and analysis
results can be found in the Supplementary Methods.

Calculation of SDG Index scores using multisource big data. Big data from
multiple sources, including remote sensing–associated data (e.g., NTL imagery and
land use data) and geospatial big data (e.g., POI data, company information big
data, gridded population data, and road networks), were used to derive the SDG
monitoring indicator values. A correlation analysis was used to select the most
suitable proxy-monitoring indicators calculated using big data for individual SDGs.
The selected big data monitoring indicators should be highly correlated with their
corresponding individual SDG scores at the 0.05 significance level. For each SDG,
as few representative big data monitoring indicators as possible were ultimately
selected to build the big data evaluation framework to increase global availability
while ensuring satisfactory evaluation results of the SDG Index.
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The Supplementary Methods section shows the detailed process of constructing
the big data monitoring indicators, and Fig. S2 provides an example. Table S1
shows the final big data assessment framework, including the SDGs, corresponding
proposed monitoring indicators, big data types, and big data sources.

The assessment methods using statistical data were also applied to the big data
monitoring indicators to assess city-level progress towards SDGs (see details in the
Supplementary Results section). To overcome the limitations of previous methods
and improve the accuracy of the assessment results, we developed an ANN model
using big data to assess different-sized cities’ progress towards the SDGs. As an
intelligent learning system, ANNs can model complex nonlinear relationships with
an appropriate network structure and transfer function and make decisions with a
massive parallel processing capability49. Through their parameter configuration
and multiple iterations, ANNs can achieve better modelling performance with
optimal weights and higher prediction accuracy than most traditional statistical
tools50,51; thus, they have been widely used in the research field of urban
sustainability27,52. As one of the most extensively applied ANN models, the
backpropagation (BP) neural network has been chosen due to its easy operation,
strong self-adaptability, and good performance in evaluation and forecasting53. A
BP neural network is a multilayer feedforward network consisting of an input layer,
one or more hidden layers, and an output layer with random connection weights
(Fig. S7). Compared with commonly used evaluation methods (e.g., entropy weight
method), BP neural networks with topological structures are good at handling
fuzzy information while considering multiple factors due to their distributed
processing capability and fault tolerance52.

The output of the first hidden layer is:

Oj ¼ f ∑
n

i¼1
wijxi � dj

� �
j ¼ 1; 2; ¼ ; l ð6Þ

where xi represents the input data in the input layer, wij represents the weight
between the input layer and the hidden layer, n is the number of neurons in the
input layer, l is the number of neurons in the hidden layer, and d represents the
threshold. The calculation of the output of other hidden layers (e.g., the second
hidden layer) is similar to Formula (6). The output of the previous hidden layer is
the input of the next hidden layer.

The number of neurons in each hidden layer (l) is:

l ¼ aþ ffiffiffiffiffiffiffiffiffiffiffiffiffi
nþm

p
1< a < 10 ð7Þ

where m is the number of neurons in the output layer.
The output of the output layer is as follows:

Yk ¼ f ∑
l

j¼1
Ojwjk � dk

� �
k ¼ 1; 2; ¼ ;m ð8Þ

where wjk represents the weight between the last hidden layer and the output layer.
The mean squared error is used as the error function for the BP neural network

model:

Ek ¼
1
2
∑kðFk � YkÞ2 ð9Þ

where Fk represents the expected output.
The Levenberg‒Marquardt algorithm is used as the network training function to

improve the convergence speed and model accuracy:

x kþ 1ð Þ ¼ x kð Þ � ½JT J þ μI��1
JTe ð10Þ

where J is the Jacobian matrix, I is a unit matrix, and e is the network error. When
the value of μ is zero, it is the same as Newton’s method. When μ is large, it
becomes the gradient descent algorithm with a small step size.

For this study, the input data were 18 big data monitoring indicators for each
city, and the expected output data were their SDG Index scores calculated using
statistical data. A total of 254 cities were randomly divided into 3 groups as follows:
70% were used for training, 15% were used to validate and stop training the
network before overfitting, and 15% were used as an independent dataset to test the
generalised network. By using MATLAB (R2021a), the number of hidden layers
and the number of neurons in each layer were adjusted several times to improve
the accuracy of the results. The final adopted ANN model consisted of an eighteen-
neuron input layer, two nine-neuron hidden layers, and a one-neuron output layer
(see details in the Supplementary Results section). Compared with a single hidden
layer structure, the multihidden layer structure is more suitable for mapping
complex relations due to its stronger generalisation capability and higher
prediction accuracy51.

Data availability
The data generated and analysed supporting the findings of this study are accessible at
https://doi.org/10.6084/m9.figshare.22005461. Raw data are available from the following
sources. Statistical data are available from China national population sample survey in
2015, City-level Statistical Communique on National Economic and Social Development
(2017) (https://www.cnstats.org/tjgb/), China City Statistical Yearbook (2016-2018), and
China Urban Construction Statistical Yearbook (2016-2018) (https://data.cnki.net/
Yearbook). Carbon emission data were collected from the Carbon Emission Account &

Datasets (https://www.ceads.net/data/county/). Data related to government performance
are available from the Research Report on Financial Transparency of Municipal
Governments in China (https://www.sppm.tsinghua.edu.cn/__local/4/EE/0C/
08CAEBBFCA6ABF51DEED995A9B5_3A0F9DEB_5E32BA.pdf?e=.pdf) and the Ranking
of Political and Business Relations in Chinese Cities (http://nads.ruc.edu.cn/zkcg/ndyjbg/
c9ad75bec3024ec0bb24e4fc6b7d3c14.htm). Marine data are available from the Bulletin on
Ecological and Environmental Quality of China’s Coastal Waters (https://www.mee.gov.cn/
hjzl/sthjzk/jagb/201808/P020191217742220289047.pdf). Company information big data
are available from TianYanCha.com (https://www.tianyancha.com/). POI data are available
from Amap.com (https://lbs.amap.com/api/webservice/guide/api/search). Road network
data are available from OpenStreetMap (https://download.geofabrik.de/asia/china.html).
Population data are available from WorldPop (https://www.worldpop.org/geodata/
summary?id=24923). Land use data are available from the Geographical Information
Monitoring Cloud Platform (http://www.dsac.cn/DataProduct/Detail/200804). Nighttime
light data are available from the Earth Observations Group (EOG) (https://eogdata.mines.
edu/nighttime_light/annual/v20/).

Code availability
The original code of the ANN model was generated by the Neural Fitting App of
MATLAB (R2021a) (https://www.mathworks.com/help/deeplearning/ref/
neuralnetfitting-app.html;jsessionid=ddfbbce3ba76ebac4d019c3f4420).

Received: 30 April 2022; Accepted: 23 February 2023;

References
1. United Nations. Sustainable Development Goals: 17 Goals to Transform Our

World https://www.un.org/sustainabledevelopment/sustainable-development-
goals/ (UN, 2015).

2. Lafortune, G. et al. The 2019 SDG index and dashboards report for European
Cities https://www.sdgindex.org/reports/sdg-index-and-dashboards-report-
for-european-cities/ (Sustainable Development Solutions Network, 2019).

3. Wiedmann, T. & Allen, C. City footprints and SDGs provide the untapped
potential for assessing city sustainability. Nat. Commun. 12, 3758 (2021).

4. Hu, F. Z. Global city development and urban wage inequality in China. Asian
Geogr. 38, 73–91 (2021).

5. Gariazzo et al. A multi-city air pollution population exposure study:
Combined use of chemical-transport and random-Forest models with
dynamic population data. Sci. Total Environ. 724, 138102 (2020).

6. Jenks, M. J. et al. Compact cities: Sustainable urban forms for developing
countries. Taylor & Francis (2000).

7. Shenzhen Municipal Government. Sustainable Development Plan of Shenzhen
(2017-2030) http://www.sz.gov.cn/zfgb/2018/gb1052/content/mpost_5018701.
html (Shenzhen Municipal Government, 2018).

8. Mayor of the City of Bonn. Voluntary Local Review: Agenda 2030 on the local
level. In: Implementation of the UN Sustainable Development Goals in Bonn.
https://sdgs.un.org/sites/default/files/2020-10/Voluntary-Local-Review-
Bericht-englisch.pdf (Mayor of the City of Bonn, 2020).

9. Sachs, J., Schmidt-Traub, G., Kroll, C., Lafortune, G. & Fuller, G. SDG Index
and Dashboards Report 2018 https://www.sdgindex.org/reports/sdg-index-
and-dashboards-2018 (Pica, 2018).

10. Sachs, J., Kroll, C., Lafortune, G., Fuller, G. & Woelm, F. The Decade of Action
for the Sustainable Development Goals: Sustainable Development Report 2021
https://www.sdgindex.org/reports/sustainable-development-report-2021/
(Cambridge: Cambridge University Press, 2021).

11. Allen, C. et al. Indicator-based assessments of progress towards the sustainable
development goals (SDGs): a case study from the Arab region. Sustain. Sci. 12,
975–989 (2017).

12. Allen, C., Reid, M., Thwaites, J., Glover, R. & Kestin, T. Assessing national
progress and priorities for the Sustainable Development Goals (SDGs):
experience from Australia. Sustain. Sci. 15, 521–538 (2020).

13. Xu, Z. et al. Assessing progress towards sustainable development over space
and time. Nature 577, 74–78 (2020).

14. Newig, J. et al. Communication regarding sustainability: Conceptual
perspectives and exploration of societal subsystems. Sustainability 5,
2976–2990 (2013).

15. Miola, A. & Schiltz, F. Measuring sustainable development goals performance:
How to monitor policy action in the 2030 Agenda implementation? Ecol.
Econ. 164, 106373 (2019).

16. UN-Habitat. Voluntary Local Reviews https://unhabitat.org/topics/voluntary-
local-reviews (UN-Habitat, 2021).

17. Lynch, A., LoPresti, A. & Fox, C. The 2019 US Cities Sustainable Development
Report. https://www.sustainabledevelopment.report/reports/2019-us-cities-
sustainable-development-report/ (Sustainable Development Solutions
Network, 2019).

COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-023-00730-8 ARTICLE

COMMUNICATIONS EARTH & ENVIRONMENT |            (2023) 4:66 | https://doi.org/10.1038/s43247-023-00730-8 |www.nature.com/commsenv 9

https://doi.org/10.6084/m9.figshare.22005461
https://www.cnstats.org/tjgb/
https://data.cnki.net/Yearbook
https://data.cnki.net/Yearbook
https://www.ceads.net/data/county/
https://www.sppm.tsinghua.edu.cn/__local/4/EE/0C/08CAEBBFCA6ABF51DEED995A9B5_3A0F9DEB_5E32BA.pdf?e=.pdf
https://www.sppm.tsinghua.edu.cn/__local/4/EE/0C/08CAEBBFCA6ABF51DEED995A9B5_3A0F9DEB_5E32BA.pdf?e=.pdf
http://nads.ruc.edu.cn/zkcg/ndyjbg/c9ad75bec3024ec0bb24e4fc6b7d3c14.htm
http://nads.ruc.edu.cn/zkcg/ndyjbg/c9ad75bec3024ec0bb24e4fc6b7d3c14.htm
https://www.mee.gov.cn/hjzl/sthjzk/jagb/201808/P020191217742220289047.pdf
https://www.mee.gov.cn/hjzl/sthjzk/jagb/201808/P020191217742220289047.pdf
https://www.tianyancha.com/
https://lbs.amap.com/api/webservice/guide/api/search
https://download.geofabrik.de/asia/china.html
https://www.worldpop.org/geodata/summary?id=24923
https://www.worldpop.org/geodata/summary?id=24923
http://www.dsac.cn/DataProduct/Detail/200804
https://eogdata.mines.edu/nighttime_light/annual/v20/
https://eogdata.mines.edu/nighttime_light/annual/v20/
https://www.mathworks.com/help/deeplearning/ref/neuralnetfitting-app.html;jsessionid=ddfbbce3ba76ebac4d019c3f4420
https://www.mathworks.com/help/deeplearning/ref/neuralnetfitting-app.html;jsessionid=ddfbbce3ba76ebac4d019c3f4420
https://www.un.org/sustainabledevelopment/sustainable-development-goals/
https://www.un.org/sustainabledevelopment/sustainable-development-goals/
https://www.sdgindex.org/reports/sdg-index-and-dashboards-report-for-european-cities/
https://www.sdgindex.org/reports/sdg-index-and-dashboards-report-for-european-cities/
http://www.sz.gov.cn/zfgb/2018/gb1052/content/mpost_5018701.html
http://www.sz.gov.cn/zfgb/2018/gb1052/content/mpost_5018701.html
https://sdgs.un.org/sites/default/files/2020-10/Voluntary-Local-Review-Bericht-englisch.pdf
https://sdgs.un.org/sites/default/files/2020-10/Voluntary-Local-Review-Bericht-englisch.pdf
https://www.sdgindex.org/reports/sdg-index-and-dashboards-2018
https://www.sdgindex.org/reports/sdg-index-and-dashboards-2018
https://www.sdgindex.org/reports/sustainable-development-report-2021/
https://unhabitat.org/topics/voluntary-local-reviews
https://unhabitat.org/topics/voluntary-local-reviews
https://www.sustainabledevelopment.report/reports/2019-us-cities-sustainable-development-report/
https://www.sustainabledevelopment.report/reports/2019-us-cities-sustainable-development-report/
www.nature.com/commsenv
www.nature.com/commsenv


18. Wamba, S. F., Akter, S., Edwards, A., Chopin, G. & Gnanzou, D. How ‘big
data’can make big impact: Findings from a systematic review and a
longitudinal case study. Int. J. Prod. Econ. 165, 234–246 (2015).

19. Avtar, R., Aggarwal, R., Kharrazi, A., Kumar, P. & Kurniawan, T. A. Utilizing
geospatial information to implement SDGs and monitor their Progress.
Environ. Monit. Assess. 192, 1–21 (2020).

20. Kashyap, R., Fatehkia, M., Tamime, R. A. & Weber, I. Monitoring global
digital gender inequality using the online populations of Facebook and
Google. Demogr. Res. 43, 779–816 (2020).

21. Allen, C., Smith, M., Rabiee, M. & Dahmm, H. A review of scientific
advancements in datasets derived from big data for monitoring the
Sustainable Development Goals. Sustain. Sci. 16, 1701–1716 (2021).

22. Keola, S., Andersson, M. & Hall, O. Monitoring economic development from
space: using nighttime light and land cover data to measure economic growth.
World Dev. 66, 322–334 (2015).

23. Elvidge, C. D. et al. A global poverty map derived from satellite data. Comput.
Geosci. 35, 1652–1660 (2009).

24. Ivan, K., Holobâcă, I.-H., Benedek, J. & Török, I. Potential of night-time lights
to measure regional inequality. Remote Sens. 12, 33 (2020).

25. Ghazaryan, G. et al. Monitoring of urban sprawl and densification processes in
Western Germany in the light of SDG Indicator 11.3. 1 based on an
automated retrospective classification approach. Remote Sens. 13, 1694 (2021).

26. Asadikia, A., Rajabifard, A. & Kalantari, M. Systematic prioritisation of SDGs:
Machine learning approach. World Dev. 140, 105269 (2021).

27. Gue, I. H. V., Ubando, A. T., Tseng, M. L. & Tan, R. R. Artificial neural
networks for sustainable development: a critical review. Clean Technol.
Environ. 22, 1449–1465 (2020).

28. Liu, Y., Huang, B., Guo, H. & Liu, J. Supplementary material for the article: A
big data approach to assess progress towards Sustainable Development Goals
for cities of varying sizes. figshare https://doi.org/10.6084/m9.figshare.
22005461 (2023).

29. Mirghaderi, S. H. Using an artificial neural network for estimating sustainable
development goals index. Manag. Environ. 31, 1023–1037 (2020).

30. Chen, J. et al. Global land cover mapping at 30 m resolution: A POK-based
operational approach. ISPRS J. Photogramm. Remote Sens. 103, 7–27 (2015).

31. Sun, X. WWF-UK. 2018 China SDGs Indicators and Progress Assessment
Report (Summary) https://www.wwfchina.org/content/press/publication/2019/
SDG%20%E6%8A%A5%E5%91%8A%E8%8B%B1%E6%96%87%E7%AE%
80%E6%9C%AC.pdf (World Wide Fund for Nature, 2018).

32. Pomati, M. & Nandy, S. Measuring multidimensional poverty according to
national definitions: operationalising target 1.2 of the Sustainable
Development Goals. Soc. Indic. Res. 148, 105–126 (2020).

33. Ram, R. Attainment of multidimensional poverty target of sustainable
development goals: a preliminary study. Appl. Econ. Lett. 28, 696–700 (2021).

34. Huang, C. L. et al. Big earth data supports sustainable cities and communities:
progress and challenges. [in Chinese]. Bull. Chin. Acad. Sci. 36, 914–922
(2021).

35. Zhou, C., Gong, M., Xu, Z. & Qu, S. Urban scaling patterns for sustainable
development goals related to water, energy, infrastructure, and society in
China. Resour. Conserv. Recycl. 185, 106443 (2022).

36. Gai, K. Study on The Coordination between Ecological Environment and
Economic Development in West China. [in Chinese]. PhD thesis, Southwestern
University of Finance and Economics (2008).

37. Wang, X. & Team, T. C. S. Reprint of “China geochemical baselines: Sampling
methodology”. J. Geochem. Explor. 154, 17–31 (2015).

38. Ortuño-Padilla, A., Espinosa-Flor, A. & Cerdán-Aznar, L. Development
strategies at station areas in Southwestern China: the case of Mianyang city.
Land Use Policy 68, 660–670 (2017).

39. Lei, W., Jiao, L., Xu, G. & Zhou, Z. Urban scaling in rapidly urbanising China.
Urban Stud. 59, 1889–1908 (2022).

40. Brelsford, C., Lobo, J., Hand, J. & Bettencourt, L. M. Heterogeneity and scale
of sustainable development in cities. Proc. Natl Acad. Sci. 114, 8963–8968
(2017).

41. Keuschnigg, M., Mutgan, S. & Hedström, P. Urban scaling and the regional
divide. Sci. Adv. 5, eaav0042 (2019).

42. Fang, C. & Yu, D. Urban agglomeration: An evolving concept of an emerging
phenomenon. Landsc. Urban Plan. 162, 126–136 (2017).

43. Tian, Y. et al. Regional industrial transfer in the Jingjinji urban agglomeration,
China: An analysis based on a new “transferring area-undertaking area-
dynamic process” model. J. Clean Prod. 235, 751–766 (2019).

44. United Nations Statistics Division. SDG Indicators https://unstats.un.org/sdgs/
indicators/indicators-list (UNSD, 2017).

45. Wang, Y. et al. Spatial variability of sustainable development goals in China: A
provincial level evaluation. Environ. Dev. 35, 100483 (2020).

46. Ma, Y. J. & Ai, X. P. Evaluation of sustainable urbanization development in
Jilin province based on the 2030 sustainable development goals (in Chinese).
Sci. Geogr. Sin. 39, 487–495 (2019).

47. Chen, J. et al. Deqing’s Progress Report on Implementing the 2030 Agenda for
Sustainable Development https://unhabitat.org/sites/default/files/2021/06/
deqing_2017_en.pdf (Deqing, 2018).

48. Dawood, T., Elwakil, E., Novoa, H. M. & Delgado, J. F. G. Toward urban
sustainability and clean potable water: Prediction of water quality via artificial
neural networks. J. Clean Prod. 291, 125266 (2021).

49. Cui, K. & Jing, X. Research on prediction model of geotechnical
parameters based on BP neural network. Neural. Comput. Appl. 31,
8205–8215 (2019).

50. Wang, J. Z., Wang, J. J., Zhang, Z. G. & Guo, S. P. Forecasting stock indices
with back propagation neural network. Expert Syst. Appl. 38, 14346–14355
(2011).

51. Paliwal, M. & Kumar, U. A. Neural networks and statistical techniques: A
review of applications. Expert Syst. Appl. 36, 2–17 (2009).

52. Li, X., Fong, P. S., Dai, S. & Li, Y. Towards sustainable smart cities: An
empirical comparative assessment and development pattern optimization in
China. J Clean Prod. 215, 730–743 (2019).

53. Deng, Y., Xiao, H., Xu, J. & Wang, H. Prediction model of PSO-BP neural
network on coliform amount in special food. Saudi J. Biol. Sci. 26, 1154–1160
(2019).

Acknowledgements
This work was supported by the National Key Research and Development Program of
China (2022YFB3903700) and the Strategic Priority Research Program of the Chinese
Academy of Sciences (XDA19090108).

Author contributions
B.H. and Y.L. designed the research. Y.L. contributed and checked the data. Y.L. and B.H.
built the models and carried out analyses. Y.L. and B.H. wrote the original manuscript.
Y.L., B.H., H.G., and J.L. interpreted the findings and revised the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s43247-023-00730-8.

Correspondence and requests for materials should be addressed to Bo Huang.

Peer review information Communications Earth & Environment thanks Bhavya Alankar
and the other, anonymous, reviewer(s) for their contribution to the peer review of this
work. Primary Handling Editor: Joe Aslin.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

ARTICLE COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-023-00730-8

10 COMMUNICATIONS EARTH & ENVIRONMENT |            (2023) 4:66 | https://doi.org/10.1038/s43247-023-00730-8 | www.nature.com/commsenv

https://doi.org/10.6084/m9.figshare.22005461
https://doi.org/10.6084/m9.figshare.22005461
https://www.wwfchina.org/content/press/publication/2019/SDG%20%E6%8A%A5%E5%91%8A%E8%8B%B1%E6%96%87%E7%AE%80%E6%9C%AC.pdf
https://www.wwfchina.org/content/press/publication/2019/SDG%20%E6%8A%A5%E5%91%8A%E8%8B%B1%E6%96%87%E7%AE%80%E6%9C%AC.pdf
https://www.wwfchina.org/content/press/publication/2019/SDG%20%E6%8A%A5%E5%91%8A%E8%8B%B1%E6%96%87%E7%AE%80%E6%9C%AC.pdf
https://unstats.un.org/sdgs/indicators/indicators-list
https://unstats.un.org/sdgs/indicators/indicators-list
https://unhabitat.org/sites/default/files/2021/06/deqing_2017_en.pdf
https://unhabitat.org/sites/default/files/2021/06/deqing_2017_en.pdf
https://doi.org/10.1038/s43247-023-00730-8
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsenv

	A big data approach to assess progress towards Sustainable Development Goals for cities of varying�sizes
	Results
	City-level individual SDG performance
	Harnessing big data to assess the SDGs with an ANN model
	City-level SDG Index performance

	Discussion
	Conclusions

	Methods
	Calculation of individual SDG and SDG Index scores using statistical data
	Calculation of SDG Index scores using multisource big data

	Data availability
	References
	Code availability
	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




