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Abstract

The relationships between habitat amount and fragmentation level and functional connec-
tivity and inbreeding remain unclear. Thus, we used genetic algorithms to optimize the
transformation of habitat area and fragmentation variables into resistance surfaces to pre-
dict genetic structure and examined habitat area and fragmentation effects on inbreeding
through a moving window and spatial autoregressive modeling approach. We applied these
approaches to a wild giant panda population. The amount of habitat and its level of frag-
mentation had nonlinear effects on functional connectivity (gene flow) and inbreeding.
Functional connectivity was highest when approximately 80% of the surrounding land-
scape was habitat. Although the relationship between habitat amount and inbreeding was
also nonlinear, inbreeding increased as habitat increased until about 20% of the local land-
scape contained habitat, after which inbreeding decreased as habitat increased. Because
habitat fragmentation also had nonlinear relationships with functional connectivity and
inbreeding, we suggest these important responses cannot be effectively managed by mini-
mizing or maximizing habitat or fragmentation. Our work offers insights for prioritization
of protected areas.
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Efectos Complejos de la Cantidad de Hábitat y la Fragmentación sobre la Conectividad
Funcional y la Endogamia en una Población de Panda Gigante
Resumen: Las relaciones entre la cantidad de hábitat y el nivel de fragmentación con la
conectividad funcional y la endogamia no son muy claras. Por lo tanto, utilizamos algorit-
mos genéticos para optimizar la transformación de la superficie de hábitat y variables de
fragmentación en superficies de resistencia para predecir la estructura genética y exami-
namos los efectos de la superficie de hábitat y la fragmentación sobre la endogamia por
medio de un método de ventana móvil y de modelado espacial autorregresivo. Aplicamos
estos métodos a una población de panda gigante. La cantidad de hábitat y su nivel de
fragmentación tuvo efectos no lineales sobre la conectividad funcional (flujo génico) y
la endogamia. La conectividad funcional fue más alta cuando aproximadamente 80 por
ciento del paisaje circundante era hábitat. Aunque la relación entre la cantidad de hábitat y
la endogamia tampoco fue lineal, la endogamia incrementó hasta que casi 20% del paisaje
local contenía hábitat, después de lo cual la endogamia decreció a medida que incrementó
el hábitat. Debido a que la fragmentación de hábitat tampoco tuvo relaciones lineales con
la diversidad funcional y la endogamia, sugerimos que estas respuestas importantes no
pueden ser manejadas eficientemente minimizando o maximizando el hábitat o la frag-
mentación. Nuestro trabajo aporta conocimientos para la priorización de áreas protegidas.
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INTRODUCTION

It is generally recognized that habitat amount should be maxi-
mized in conservation endeavors (Franklin et al. 2000; Villard &
Metzger 2014; Fahrig 2017). However, the relative importance
of habitat fragmentation has been the subject of hot debate
(e.g., Fahrig 2017; Fletcher et al. 2018; Fahrig et al. 2019). In
a review of 118 studies, Fahrig (2017) found that most eco-
logical effects of habitat fragmentation were not significant and
most that were significant were positive. Other studies show that
habitat fragmentation has clear negative effects on several eco-
logical responses and ecosystem functions (Haddad et al. 2015;
Fletcher et al. 2018).

Habitat loss and fragmentation affect the successful dis-
persal and reproduction of individuals across landscapes (i.e.,
functional connectivity or gene flow). Functional connectivity
between populations maintains levels of genetic diversity neces-
sary to adapt to changing environmental conditions (Frankham
1995; Eizaguirre & Baltazar-Soares 2014; Bay et al. 2017).
Maintenance of functional connectivity among discrete habitat
patches across the landscape also allows recolonization follow-
ing extirpations (Hanski 1998; Hanski & Gaggiotti 2004). Thus,
it is vital for the preservation of genetic and species diversity, key
conservation goals that have been emphasized in the post-2020
Global Biodiversity Framework (Smart & Peña Moreno 2019;
CBD 2020).

Keyghobadi (2007) conducted a review of 32 empirical stud-
ies that compared the genetic structure of populations in more
and less fragmented landscapes and found that 69% showed
increased genetic differentiation (reduced functional connectiv-
ity) in fragmented landscapes and 31% showed either no effect
or greater differentiation in control landscapes. Most of the

reviewed studies conflated habitat loss and fragmentation and
did not disentangle their effects, which is a frequent problem
in habitat fragmentation ecological research (Keyghobadi 2007;
Smith et al. 2009). Although the directional effects of habi-
tat amount on functional connectivity have been less explic-
itly researched, and are often conflated with fragmentation,
it is generally assumed that habitat loss reduces connectivity
(Soons et al. 2005; Dytham & Travis 2012). Regarding the rel-
ative importance of habitat loss versus its fragmentation on
functional connectivity, opposing conclusions have even been
reported in simulation studies (Cushman et al. 2012; Jackson &
Fahrig 2016).

Landscape genetics methods, which combine techniques
from landscape ecology and population genetics (Manel et al.
2003), are ideal for studying the effects of habitat amount and
fragmentation on functional connectivity. Typically, environ-
mental variables are transformed into new surfaces based on
hypothesized resistances to animal movements that result in
an isolation by resistance (IBR) pattern (Manel & Holdereg-
ger 2013). We developed a method that combines species dis-
tribution modeling (SDM) and landscape genetics to estimate
habitat amount and a suite of habitat fragmentation variables
as continuous resistance layers across the landscape and investi-
gated their effects on functional connectivity in a wildlife pop-
ulation. We used genetic algorithms to optimize the transfor-
mation of these continuous variables into resistance surfaces
that predict observed genetic structure, implemented through
the ResistanceGA R package (Peterman 2018). We also exam-
ined habitat amount and fragmentation effects on inbreeding
through a moving window and spatial autoregressive model-
ing approach. We tested our methods on a wild population of
giant pandas (Ailuropoda melanoleuca). Giant pandas are habitat
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FIGURE 1 Study area and sample locations inset on a map of continental
China and the current giant panda geographic range

specialists and are sensitive to anthropogenic disturbance
(Schaller 1985). Giant pandas exist in small remnant populations
that face anthropogenic habitat degradation and intensive con-
servation effort (Xu et al. 2017). Our results are directly applica-
ble to the conservation planning of protected areas to maximize
functional connectivity and minimize inbreeding in panda pop-
ulations across the landscape, and our methods are applicable to
many other wildlife species.

METHODS

Study area

Wolong Nature Reserve is an approximately 2000-km2 national
protected area centrally situated in the panda’s extant range
(Figure 1). There are approximately 150 giant pandas in the
reserve (Qiao et al. 2019). Panda habitat in the reserve con-
sists of understory bamboo forests below 4000 m elevation
(Linderman et al. 2005). Besides forest and elevation require-
ments, other important habitat variables include terrain rugged-
ness and anthropogenic disturbance levels (Hull et al. 2014).
Rugged terrain induces additional energy expenditure that pan-
das preferentially avoid (Nie et al. 2015), and human activity

negatively affects panda occurrence (Zeng et al. 2019). These
variables influence the amount of habitat and levels of habitat
fragmentation in the landscape surrounding panda occurrence
locations (Liu et al. 2016).

Noninvasive fecal sampling

Fecal samples were collected throughout 2015 and 2016 with a
systematic sampling design. We subdivided known and poten-
tial habitat areas throughout the reserve, based on suitable ele-
vation ranges (1100–4000 m), into 2-km2 survey cells that were
searched in a zigzag manner by experienced field workers and
local guides. Fresh panda feces, judged by the status of the outer
mucosal membrane, were collected, stored in sterile plastic bags,
and frozen within 8 h of collection.

Genetic analyses

Seven microsatellite loci were selected for analysis based on lev-
els of polymorphism, lack of genotyping error, and high ampli-
fication success rate even when feces were exposed to natural
weather conditions for extended periods (Huang et al. 2015).
We genotyped 142 unique pandas across the reserve. Details of
laboratory methods and quality control are in Appendix S1.

To calculate genetic distance between individuals, we
used codominant genotypic distance implemented through
GenAlEx, which effectively measures genetic structure when
the number of loci available is small (Peakall & Smouse 2006,
2012; Draheim et al. 2015). We allowed missing information at
one locus to maximize sample size. If an individual was cap-
tured multiple times across the study area, its location for the
landscape genetic analyses was defined as the median x and y

coordinates from its capture locations. We used the median to
avoid excessive placement of individuals in unrealistic habitat
locations on the landscape.

To calculate inbreeding, we calculated Wright’s inbreeding
coefficient (FIS) corrected for small sample size with the gstu-
dio R package (Wright 1965; Dyer 2012; R Core Development
Team 2019). This metric corresponds to the level of observed
heterozygosity relative to expected heterozygosity in the pop-
ulation; positive values indicate increased inbreeding and neg-
ative values indicate decreased inbreeding. To define the local
populations within which to calculate FIS, we used a moving-
window approach across the landscape with the same optimized
spatial scale (window size) used in our functional-connectivity
modeling to maintain consistency (details in Appendix S5 and
Peterman [2018]).

Giant panda presence data

In training our habitat models, we used georeferenced giant
panda sign (scat, hair) locations gathered from the fourth
national giant panda survey, a consistent range-wide sampling
effort (China). We selected only presence locations within our
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FIGURE 2 Flowchart of the process and intermediary outputs in the development of a map of landscape resistance to panda gene flow across the study area in
China, starting with raw environmental variables and giant panda presence data set. For more details on each step and definitions of abbreviations, see METHODS

noninvasive genetics survey extent (n = 360) (Figure 2). This
subset of the survey presence data was collected throughout
Wolong in 2012. We tested the ability of the models to predict
giant panda habitat across our study area based on the locations
of fecal samples collected for our genetic analyses from 2015
to 2016. We thus trained models with an independently col-
lected data set and evaluated them based on our genetic sample
locations—the most relevant locations for our later landscape
genetics analyses.

MaxEnt modeling

We used elevation, aspect, terrain ruggedness, percent tree
cover, distance to a main road, and distance to a stream or

river as predictors of giant panda habitat (variable sources in
Appendix S3). We used the MaxEnt modeling algorithm imple-
mented through dismo R package to relate giant panda presence
locations to environmental predictors (Hijmans et al. 2017).
This species distribution model has good predictive accuracy
(Elith & Graham 2009). Another advantage of MaxEnt is that
its formulation as a presence-only algorithm does not require
known absence locations, but instead compares presence loca-
tions with background environmental conditions described by
random points across the study area (Phillips et al. 2006). The
algorithm makes use of machine-learning techniques to min-
imize the relative entropy in the predicted suitability between
the presence and background locations (Elith et al. 2011).

We randomly selected 100,000 points across our study area
as background locations. This sample was 10 times the default
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number generated by MaxEnt. Our study area had a large
number of raster cells (>10 million), so we chose this num-
ber of points to improve estimates of background conditions
(Renner & Warton 2013). We trained the MaxEnt model with
these background locations, the presence locations from the
fourth national survey, and the environmental variables. We then
used the model and environmental variables to predict pres-
ence (1) and absence (0) of habitat across the study area and
tested model accuracy using the presence locations from our
fecal genetics survey and 68,270 random points that served as
background locations. We chose this number of background
locations so the ratio of our model-training background loca-
tions versus model-testing background locations matched the
ratio of model-training presence locations versus model-testing
presence locations used in our modeling procedure. The total
model-training and model-testing extents remained the same—
only the number of presence and background points differed.
Several accuracy statistics, including area under the receiver
operator curve (AUC), true skill statistic (TSS), and correlation
between predicted suitability values between test presences and
test background locations (Cor), were used to evaluate model
performance in predicting habitat. In using these statistics, we
assumed the majority of our pseudoabsence locations could be
interpreted as true absences. Finally, we converted the contin-
uous habitat surface into a binary habitat or not habitat map
around the suitability threshold that maximized the value of the
TSS (Figure 2). This threshold reflects the point at which omis-
sion and commission errors in predicting the relative density
of panda locations were minimized to create the most accurate
depiction of habitat across the landscape (Allouche et al. 2006).

Habitat amount and fragmentation

To create variables measuring habitat amount and fragmenta-
tion that could be used to predict gene flow, we needed spatially
explicit estimates that would capture these values in the rele-
vant surrounding landscape for each cell in our study area. To
achieve this, we used a moving-window approach on the binary
habitat–not habitat map in which we calculated the amount of
habitat and its level of fragmentation (see below) in the area
within a certain distance threshold surrounding the focal cell,
which then took those values. We optimized this threshold at
42 cells (1149 m) away from the focal cell, resulting in an 85-
× 85-cell (2325 × 2325 m) matrix for the calculation of habi-
tat amount and fragmentation. This threshold was optimized
using the SS_optim.scale function in the ResistanceGA package
in R (details in Appendix S5 and Peterman [2018]). The result-
ing local landscape window of 5.40 km2 fell within the typical
home range size of pandas in this region (Connor et al. 2016).

We evaluated seven habitat fragmentation variables: total
edge contrast index (TECI), clumpiness index (CLUMPY),
proximity index coefficient of variation (PROX_CV), mean core
area index (CAI_MN), core area index coefficient of variation
(CAI_CV), core area index SD (CAI_SD), and core area coef-
ficient of variation (CORE_CV) (McGarigal et al. 2012). We
chose these metrics because they have low correlation with the

amount of habitat in a given landscape and the capacity to dif-
ferentiate between landscapes featuring a wide range of habi-
tat fragmentation levels (Wang et al. 2014). We tested the per-
formance of two definitions of edge depth in calculating the
core area metrics—one cell (27.35 m) and seven cells (191.45
m)—based on the assumption that core habitat starts at 27.35 m
from an edge or 191.45 m from an edge, respectively. We have
observed panda scat <50 m from the edge of habitat patches
(e.g., <50 m from a grassland, which is not habitat), which sup-
ports the former edge-depth definition, whereas the latter def-
inition incorporates the majority of step lengths derived from
GPS-telemetry location fixes at 3-h intervals in five pandas (Hull
et al. 2015). The CAI metrics measure the percent habitat that
is core habitat across habitat patches. The CORE_CV metric
is the coefficient of variation of the amount of core area in
each patch. For the edge contrast metric (TECI), we defined
the contrast between habitat and not habitat as the maximum
possible (contrast = 1). Because we had only two classes in
our landscape, TECI was a measure of the number of edges in
each local window. The CLUMPY metric measures the number
of like adjacencies observed between habitat cells in the land-
scape compared with the number that would be expected given
a random distribution of the habitat cells. We used the moving-
window functionality in FRAGSTATS to calculate all metrics
with the 85- × 85-cell window with an eight-cell neighborhood
(McGarigal et al. 2012). The amount of habitat in the window
was calculated by summing the number of habitat cells in the
same 85- × 85-cell window with the focal function in the raster
R package (Hijmans 2020).

Landscape genetic analyses

To relate landscape variables to the observed pattern of genetic
distances between individuals, variables must be transformed
into a resistance surface (Spear et al. 2010). This surface repre-
sents the hypothesized effect of the landscape variable on gene
flow. The relative support of a given variable and its transforma-
tion to a resistance surface must be evaluated relative to other
hypothesized variables or transformations, with the observed
genetic distances as the response variable to resistance dis-
tances between the genetic sample locations. We used the Resis-
tanceGA package to streamline this process and evaluate the
effects of habitat amount and fragmentation on genetic distance
(Peterman 2018). This package uses genetic algorithms and
maximum likelihood population mixed effects (MLPE) models
to test multiple transformations of input variables into resis-
tance surfaces and evolve to better solutions based on how
well the proposed resistance surface predicts genetic distance
(McRae 2006; Peterman et al. 2014). We modeled movement
with Circuitscape, which evaluates probabilities of movement at
each cell between sample locations based on the resistance val-
ues of the surrounding cells (McRae 2006).

By employing MLPE models, the effects of environmen-
tal resistance surfaces on movement can be separated from
the random effects specified as the pairwise dependence of
observations. Likely due to this flexibility, MLPE models have
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tested as the best method of model selection among those
commonly used in landscape genetics research (Peterman et al.
2019). ResistanceGA also performs well in recovering the cor-
rect resistance surface relative to other landscape genetics meth-
ods in simulated environments (Peterman et al. 2019). We con-
sidered all eight possible resistance transformation equations in
the package, which each takes a maximum and shape parame-
ter to define the transformation and can be varied to explore a
variety of transformation curves (Peterman 2018). The genetic
algorithm randomly generates new transformations through the
mutation and recombination of the maximum and shape param-
eters in every generation. We used the loglikelihood of the
resulting MLPE model as the fitness function to optimize. In
evaluating models, we defined the number of parameters (k) as
3: the surface itself, maximum value of the transformation, and
shape of the transformation.

We evaluated the habitat amount, our continuous habitat suit-
ability index, and eight habitat fragmentation metric surfaces
individually with the SS_optim function. We also evaluated a
model including only Euclidean distance between sample loca-
tions (isolation-by-distance model) and a completely null model
based on the assumption of panmixia. Before optimization, we
aggregated the cell size of these surfaces by a factor of 8 to a size
of 218.8 m based on the mean value of the small cells due to the
computational demand of these cells (27.35 m cell size). This is
unlikely to affect results (McRae 2006; Cushman & Landguth
2010). We ranked the performance of these single variable sur-
face models according to their AIC corrected for the number
of sample individuals and parameters (AICc) in each MLPE
(Akaike 1974). We considered any surface that had an AICc
with a difference of <4 from the top surface as competitive
(Burnham & Anderson 2004; Beninde et al. 2016). We then built
multivariable resistance surfaces by transforming and adding
together every possible combination of these competitive vari-
able surfaces with the MS_optim function in ResistanceGA. In
this function, the relative weights of each surface’s contribution
to the final resistance surface are also optimized. If any pair of
the competitive single variable surfaces had a Pearson’s corre-
lation value >0.5, we considered only the higher ranked sur-
face of the pair in the multi-surface model due to collinearity
and the need to disentangle habitat amount from fragmentation
effects (Dormann et al. 2013; Wang et al. 2014). We ranked all
final single-surface and multi-surface variable combinations and
transformations according to AICc. To facilitate ease of inter-
pretation of the final transformations of the habitat amount and
fragmentation surfaces, we inversed the resistance transforma-
tion plots to depict functional connectivity instead.

To examine the effects of habitat amount and fragmentation
on inbreeding (FIS), we fitted spatial autoregressive (SAR)
models to the FIS values for each local population and habitat
amount or fragmentation layer with the spatialreg R package
(Bivand et al. 2008). Each local population was defined as
those individuals in the local landscape window (5.4 km2)
surrounding a cell. This was kept consistent with the optimized
window described above in the landscape genetics analyses to
facilitate comparisons. We defined the distance at which spatial
autocorrelation was estimated and accounted for (Bivand et al.

TABLE 1 Most supported (change in Akaike’s information criterion
corrected for small sample size [AICc] <4) maximum-likelihood population
mixed-effects model (MLPE) results from ResistanceGA outputs relating
habitat amount and fragmentation effects on giant panda gene flow, ranked by
increasing AICc, and most supported spatial autoregressive model (SAR)
results relating habitat fragmentation to Wright’s inbreeding (FIS), ranked by
increasing AICc and habitat amount model

Transformed

surfaces in

MLPE model Parameters AICc

Change

in AICc

Conditional

R2

CAI_SDa 4 44,206.18 0.00 0.348793

Habitat Amount 4 44,208.91 2.74 0.367357

Surfaces in SAR
model

CAI_MNb,c x
TECIc

8 –14,616.37 0.00

Habitat Amountc 6 –14,580.37 36

Abbreviations: CAI, core area index; MN, mean; SD, standard deviation; TECI, total edge
contrast index.
aMetric calculated with edge depth of 191.45 m.
bMetric calculated with edge depth of 27.35 m.
cModels included quadratic terms.

2008) by plotting a variogram fitted to the spatial FIS data and
by visually determining this distance threshold at approximately
2000 m (Appendix S7) (Bivand et al. 2008). Because we used
spatial regression for this response, we directly evaluated the
support for including linear versus nonlinear terms in the
models incorporating each habitat and fragmentation layer by
creating two separate models per surface. We ranked models
according to AICc and created multivariate models if models
based on separate single surfaces were within four AICc of each
other.

RESULTS

Functional connectivity and inbreeding responded nonlinearly
to amount of habitat (Figure 3). There was support for three
models incorporating the optimized transformations of two dif-
ferent variables into resistance surfaces that explained genetic
connectivity, of which habitat amount ranked second based on
AICc (Table 1). For habitat amount, an inverse–reverse Ricker
transformation was most associated with functional connec-
tivity across the landscape (Figure 3). Functional connectivity
increased as the number of habitat cells increased until about
80% (or 4.34 km2) of the surrounding landscape (5.40 km2)
was habitat, but it rapidly decreased further increases in habitat
(Figure 3). Inbreeding increased slightly as habitat increased
until about 25% (1.35 km2) of the surrounding landscape was
habitat, and it decreased as habitat further increased.

Among the top models of functional connectivity was the
standard deviation of the core area index between habitat
patches (CAI_SD) in the surrounding landscape (Table 1 &
Appendix S6). The optimized transformation of CAI_SD
was nonlinear and resulted from inverse Ricker equations
(Figure 3a). Specifically, local landscape windows with no



CONSERVATION BIOLOGY 7

FIGURE 3 (a) Functional connectivity (inverse of resistance) response curves to habitat amount and fragmentation metrics in the most supported
maximum-likelihood population effects models (histograms, distribution of raw data values for each axis; CAI SD, standard deviation of the core area index) and (b)
inbreeding (measured as Wright’s inbreeding coefficient) response curves to fragmentation metrics in the most supported spatial autoregressive models (shading,
95% CIs; CAI MIN, minimum of the core area index; TECI, total edge contrast index) of a population of pandas. In panel (b), habitat amount was not among the
top models but is presented for comparison

variation in the relative amount of core area between patches
resulted in low connectivity, but this connectivity rapidly
increased until it was maximized at an SD in the core area index
of about 2.5. For example, when a local landscape contained two
habitat patches with 60% and 56.46% core area, this local land-
scape would have an SD of 2.5 and the highest possible func-
tional connectivity predicted. Further increases in heterogeneity

rapidly decreased functional connectivity until about CAI_SD
= 15, which represented relatively large variation in the pro-
portion of core area between habitat patches (e.g., two patches
containing 20% and 50% core area). In other words, local
landscapes entirely composed of a single patch of habitat (no
variation in CAI), composed of multiple patches with matching
or extremely similar CAI values, or composed of multiple
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TABLE 2 Parameter coefficients from the top maximum-likelihood
population mixed-effects model (MLPE) of habitat amount or fragmentation
effects on functional connectivity and the top spatial autoregressive model
(SAR) of habitat amount or fragmentation on inbreeding (measured as Wright’s
inbreeding coefficient) in a giant panda population

Model Estimate SE p

MLPEa

Intercept 9.29 0.26 <0.001

CAI_SD 0.27 0.03 0.004

SAR

Intercept –0.05.2 0.018 0.004

TECI_1 –7.2 × 10–4 2.5 × 10–4 0.004

TECI_12 1.1 × 10–5 2.5 × 10–6
<0.001

CAI_MN 0.002 3.5 × 10–4
<0.001

CAI_MN2 –1.3 × 10–5 2.7 × 10–6
<0.001

Lambdab 0.93 0.01 <0.001

aParameter abbreviations are defined in METHODS and Table 1.
bSpatial autocorrelation parameter.

patches of drastically different CAI values resulted in low gene
flow.

The top model fit to FIS included two fragmentation metrics:
the mean CAI value metric with the 27.35-m edge definition
and TECI. Both these metrics had nonlinear effects on inbreed-
ing (Figure 3b). The mean CAI metric had a nonlinear, initially
positive effect on inbreeding until about 65%, after which fur-
ther inbreeding decreased as CAI increased. The TECI metric
indicated minimum inbreeding at around 30%, an intermediate
amount of habitat edges on the landscape (Figure 3b). Although
the habitat amount surface was not ranked in the top mod-
els, we also plotted the marginal effects of habitat amount on
FIS, which indicated some nonlinearity but minimized FIS at
100% habitat in the local landscape. For the top models relat-
ing habitat amount or fragmentation to functional connectivity
and inbreeding, all parameter coefficients were statistically sig-
nificant (Table 2).

DISCUSSION

We, to the best of our knowledge, are the first to demonstrate
a hump-shaped nonlinear effect of habitat amount and frag-
mentation on functional connectivity in an empirical system,
although similar patterns for habitat amount were found in a
simulation (Jackson & Fahrig 2016). We posit that large amounts
of habitat in a local area result in more resource availability
and in turn lower dispersal rates and smaller dispersal distances,
which drive the negative relationship between habitat amount
and functional connectivity we observed at habitat amounts of
80% or more. In theory, at high population densities and growth
rates, areas with more habitat may serve as source populations
from which individuals disperse across the landscape (Clobert
et al. 2009; Draheim et al. 2016). Either giant panda densities in
our landscape were not high enough to promote this behavior

or the number of nondispersing individuals was high enough
to mask the genetic signal of individuals dispersing from the
high-resource source areas. In either case, it may make sense
to think of local landscapes containing more than 80% habitat
as being attractive to individuals rather than as impediments to
their movement (Clobert et al. 2012). Regardless of the theoret-
ical framing of the process, our findings show that high levels
of habitat indicative of high structural connectivity may result
in an observable pattern of reduced functional connectivity in
panda populations within the relatively short time frame of our
study. Although inbreeding in local panda populations was also
affected nonlinearly by habitat amount, our results indicated
that the lowest inbreeding occurred at the maximum amount
of habitat.

An increase in functional connectivity as fragmentation
increases has been observed in empirical and theoretical studies
before, likely because the probability of encountering and suc-
cessfully colonizing a new habitat patch increases as fragmen-
tation increases (Holzschuh et al. 2010; Saura et al. 2014). We
found a threshold at which this trend may be reversed, however,
and that higher levels of fragmentation may limit successful dis-
persal. In our case, this threshold occurred when patches were
slightly varied in their amount of core habitat area—deviations
from this optimal variance resulted in rapid decreases in func-
tional connectivity.

Genetic diversity commonly increases as fragmentation
decreases (Keyghobadi 2007; Gonzalez et al. 2020), in part
because of the infusion of nonresident alleles, but nonlinear
effects have rarely been identified. In our study system, we
found nonlinear relationships with inbreeding in the CAI_MN
and TECI metrics across that landscape. For the CAI_MN,
inbreeding was minimized when all patches had zero core area
on the local landscape, whereas the TECI variable coefficients
suggested that inbreeding was minimized when there was a low
but nonzero presence of edges on the landscape. These find-
ings suggest there is an optimum balance between maintaining
adequate habitat and allowing landscape structure with multi-
ple smaller habitat patches and the presence of edges to mini-
mize inbreeding. This tracks with other studies of panda ecology
that show pandas may preferentially select the edges of bamboo
patches for feeding (Yu et al. 2003).

Although a large-scale sampling effort was undertaken, our
study system encompassed a proportionally small area of the
giant panda range and only a single (2-year) sampling period. For
larger scale landscape effects on genetic connectivity, sampling
across distinct populations (i.e., separate mountain ranges [Zhao
et al. 2013]) would be needed, but our analysis of interindivid-
ual genetic distance is a powerful tool to examine gene flow
in a continuously distributed population and more valid than
attempting to differentiate subpopulations within our study
area (Shirk et al. 2018; Qiao et al. 2019). To examine ongoing
effects of habitat structure, it will be important to sample genet-
ics over time and conduct stratified analyses (Draheim et al.
2018). Spatial scale is also an important consideration in any
ecological analysis, and its misspecification can lead to erro-
neous inference (Wiens 1989; Connor et al. 2019). We opti-
mized the window size of our landscape genetics analysis with a
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data-driven approach through ResistanceGA and used the same
window size for the inbreeding analysis to facilitate compari-
son. Although an optimized window for genetic connectivity
likely reflects a good scale of effect for analyzing inbreeding,
there may be other important spatial scales at play. Intermedi-
ate steps in our analysis may have introduced bias. For exam-
ple, the median location for individuals captured more than
once could introduce bias if that location falls in an unrealis-
tic area (which we attempted to minimize by taking the median
as opposed to the mean). Also, converting continuous predic-
tions of habitat suitability to a binary measure of habitat and
not habitat was necessary to derive fragmentation metrics, but
it reduced information in the habitat estimate (Guillera-Arroita
et al. 2015). However, the continuous habitat suitability layer was
not ranked among the top models explaining functional connec-
tivity or inbreeding (Appendix S6).

Because most conservation projects have limited funding,
our findings have significant implications for the spatial plan-
ning of habitat protection and restoration efforts. This is espe-
cially the case for threatened species facing subpopulation frag-
mentation like the giant panda (Xu et al. 2017). The varied
thresholds we found for habitat amount and fragmentation
effects on functional connectivity and inbreeding are important
to consider in conservation because these thresholds suggest
different optimums in the different response variables. Gener-
ally, however, having relatively high amounts of habitat to sup-
port pandas was important, which is consistent with conser-
vation measures such as protected areas and timber harvesting
bans. Large habitat areas may be especially important for pandas
due to their relatively low fecundity rates, meaning that migra-
tion may play an important role in demographic and genetic
connectivity and genetic diversity (Lowe & Allendorf 2010). The
finding that the optimum habitat amount for functional connec-
tivity was below 100% provides hope for the already disturbed
areas of panda habitat and suggests that such areas might still be
considered suitable. Thus, plans to connect isolated panda sub-
populations may be more realistic and feasible than previously
thought.

The protection of habitat patches versus protection of large,
uninterrupted tracts of habitat has been debated for decades
(Tjorve 2010). Our findings indicate that the protection of sev-
eral tracts, as opposed to a single large area, of habitat may
enhance functional connectivity in an obligate habitat specialist
species. This may be even more effective for generalist species,
which would likely be able to use unprotected areas more effi-
ciently (Bartonova et al. 2016; Ducatez et al. 2018). Large, con-
tiguous protected areas come with additional challenges. They
are often located in areas of low conservation value (Fuller et al.
2010; Klein et al. 2015). In more productive regions, humans
often concentrate at the edges of protected areas (Wittemyer
et al. 2008), which may reduce functional connectivity of wildlife
population in- and outside those areas. We suggest that land-
scapes of patchier habitat should be prioritized for conservation
and restoration in a scientifically informed manner (aiming for
80% habitat that maintains adequate edges) in order to maxi-
mize giant panda population health. Applying our framework to

more species would synchronize well with the post-2020 global
biodiversity framework to protect genetic, species, and ecosys-
tem diversity (e.g., Mace et al. 2018; Smart & Peña Moreno 2019;
Díaz et al. 2020).
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