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ABSTRACT

Aim Temporal transferability is an important issue when habitat models are used

beyond the time frame corresponding to model development, but has not

received enough attention, particularly in the context of habitat monitoring.

While the combination of remote sensing technology and habitat modelling

provides a useful tool for habitat monitoring, the effect of incorporating remotely

sensed data on model transferability is unclear. Therefore, our objectives were to

assess how different satellite-derived variables affect temporal transferability of

habitat models and their usefulness for habitat monitoring.

Location Wolong Nature Reserve, Sichuan Province, China.

Methods We modelled giant panda habitat with the maximum entropy algorithm

using panda presence data collected in two time periods and four different sets of

predictor variables representing land surface phenology. Each predictor variable set

contained either a time series of smoothed wide dynamic range vegetation index

(WDRVI) or 11 phenology metrics, both derived from single-year or multi-year (i.e.

3-year) remotely sensed imagery acquired by the Moderate Resolution Imaging

Spectroradiometer (MODIS). We evaluated the ability of models obtained with

these four variable sets to predict giant panda habitat within and across time periods

by using threshold-independent and threshold-dependent evaluation methods and

five indices of temporal transferability.

Results Our results showed that models developed with the four variable sets

were all useful for characterizing and monitoring giant panda habitat. However,

the models developed using multi-year data exhibited significantly higher

temporal transferability than those developed using single-year data. In

addition, models developed with phenology metrics, especially when using

multi-year data, exhibited significantly higher temporal transferability than those

developed with the time series.

Main conclusions The integration of land surface phenology, captured by high

temporal resolution remotely sensed imagery, with habitat modelling constitutes

a suitable tool for characterizing wildlife habitat and monitoring its temporal

dynamics. Using multi-year phenology metrics reduces model complexity,

multicollinearity among predictor variables and variability caused by inter-

annual climatic fluctuations, thereby increasing the temporal transferability of

models. This study provides useful guidance for habitat monitoring through the

integration of remote sensing technology and habitat modelling, which may be

useful for the conservation of the giant panda and many other species.
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INTRODUCTION

Habitat loss and degradation due to human activities and

human-induced climate change have had an impact on, and

will continue to affect, many animal and plant species (Sala

et al., 2000). To minimize negative impacts and threats, there

have been increased efforts to protect species habitats.

Monitoring the spatio-temporal dynamics of species habitats

is therefore essential, not only for improving current conser-

vation efforts but also for guiding future conservation

strategies (Balmford et al., 2003; Pereira & Cooper, 2006;

Lengyel et al., 2008).

Although routine field surveys can detect fine-scale changes

in species habitat, they seldom provide complete spatial

coverage of the areas of interest. While empirical habitat models

are a useful tool for generalizing field information (Guisan &

Zimmermann, 2000), remote sensing technology provides

synoptic information about the land surface, in some instances

with a high temporal resolution (Turner et al., 2003). There-

fore, the combination of remotely sensed data, field survey data

and habitat modelling makes it possible to map species habitats

and monitor their temporal changes across large areas.

Seasonal variability in the biophysical characteristics (e.g.

biomass) of vegetation as portrayed by multi-temporal

remotely sensed data, i.e. land surface phenology (Friedl et al.,

2006), is an important feature of the land surface for

characterizing species habitat. Land surface phenology reflects

different land-cover types as well as different characteristics of

vegetation (Reed et al., 1994; DeFries et al., 1995), and thus

has been used for mapping changes in land use (de Beurs &

Henebry, 2004) and for monitoring vegetation dynamics (Beck

et al., 2006; Koltunov et al., 2009). In addition, several

variables representing land surface phenology have been used

in habitat models for mapping both plant and animal habitats

at a single point in time (Morisette et al., 2006; Viña et al.,

2008; Tuanmu et al., 2010). However, the usefulness of land

surface phenology for monitoring the temporal dynamics of

species habitats has not been assessed.

When habitat models are intended to be used beyond the

areas and time periods over which they were originally

developed, one critical characteristic is their transferability,

i.e. the ability of a model developed in one area or time period

to be reliably applied to different areas or time periods. While

spatial transferability has drawn increasing attention (e.g.

Randin et al., 2006; Peterson et al., 2007; Zanini et al., 2009),

the issue of temporal transferability has received comparatively

less attention (but see Thuiller et al., 2004; Varela et al., 2009;

Zharikov et al., 2009), particularly in the context of habitat

monitoring. As diverse characteristics of the land surface

portrayed by remotely sensed data have become increasingly

available for habitat modelling (Kerr & Ostrovsky, 2003;

Turner et al., 2003), it is essential to assess how different uses

of remotely sensed data may affect model transferability.

The goal of this study was to evaluate the utility of different

land surface phenology variables for monitoring the temporal

dynamics of wildlife habitat, particularly addressing their

effects on model transferability. Using the giant panda,

Ailuropoda melanoleuca (David, 1869), as a case study, our

objectives were: (1) to evaluate the predictive power and

temporal transferability of habitat models derived from

different land surface phenology variables; (2) to identify the

best land surface phenology variable set for modelling, and

hence for monitoring giant panda habitat; (3) to explore

potential factors affecting model transferability; and (4) to

examine implications for monitoring the temporal dynamics

of wildlife habitat with the integration of habitat modelling

and remotely sensed data.

MATERIALS AND METHODS

Study area

Wolong Nature Reserve, Sichuan Province, China (Fig. 1) is

located between the Sichuan Basin and the Tibetan highlands;

it exhibits elevational variation in climate and soils that result

in a diverse flora and fauna. As one of the largest nature

reserves (c. 2000 km2) established for giant panda conserva-

tion, Wolong Nature Reserve is home to c. 10% of the entire

wild giant panda population (State Forestry Administration,

2006). Natural vegetation along the elevational gradient ranges

from broadleaf forests at low elevations to mixed forests and

subalpine coniferous forests at high elevations. Evergreen

bamboo species dominate understorey layers and constitute

the staple food for giant pandas (Schaller et al., 1985). Around

50% of the reserve lies above the tree line (c. 3600 m a.s.l.) and

is covered with alpine meadows, rocks and permanent snow,

which are not suitable for the giant panda (Schaller et al.,

1985).

Giant panda presence data

We obtained giant panda presence data from two field

datasets. The first dataset was acquired by the Third National

Giant Panda Survey (State Forestry Administration, 2006)

during the summer of 2001. This survey covered all areas that

were known to, or had the potential to, support giant pandas

(Fig. 1). The survey area was divided into c. 2 km2 sections and

each surveyor was assigned one section per day to search for

and georeference giant panda signs (including faecal drop-

pings, feeding sites, dens, footprints and visual sightings) using

global positioning system (GPS) receivers (Loucks & Wang,

2004; State Forestry Administration, 2006). The second dataset

was obtained from wildlife surveys we conducted from August

2006 to February 2008. We followed the same procedure used

in the national survey, but concentrated our survey efforts in

one of the regions considered to possess the best giant panda

habitat in the reserve (Liu et al., 2001; Fig. 1).

Remotely sensed data

We used a time series of the Moderate Resolution Imaging

Spectroradiometer (MODIS) imagery (MOD09Q1) acquired
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between May 2000 and April 2008 for portraying the

phenological characteristics of vegetation. This image time

series is composed of 8-day composite surface reflectance in

the red (620–670 nm) and near-infrared (841–876 nm) spec-

tral bands, with a spatial resolution of c. 250 · 250 m pixel)1.

Using surface reflectance, we calculated the wide dynamic

range vegetation index (WDRVI; Gitelson, 2004) for each

8-day composite image. The WDRVI reduces the saturation

problem of the widely used normalized difference vegetation

index (NDVI) under moderate-to-high biomass conditions

(Gitelson, 2004), and thus it is more suitable for detecting

vegetation dynamics under high green biomass, such as forests

with dense understorey bamboo like those found in our study

area. To further reduce the potential effects of cloud cover on

the WDRVI values, we generated a time series of 16-day

WDRVI composites using the maximum value between two

consecutive 8-day periods.

Using timesat 2.3 (Jönsson & Eklundh, 2004), we applied

pixel-wise smoothing to the time series of WDRVI composites

by means of the adaptive Savitzky–Golay filter (Savitzky &

Golay, 1964). We then generated 11 phenology metrics for

each of the seven full-year cycles (2001–07) from the time

series of smoothed WDRVI values (Fig. 2). These metrics were

used to capture the shape and phenological characteristics of

the smoothed curve of WDRVI values (Fig. 2), which reflect

the seasonal variability of green biomass. Among the 11

phenology metrics, two correspond to the lowest and highest

levels of WDRVI values in a cycle (A and B, respectively, in

Fig. 2), and a third metric represents the difference between

these extremes (C in Fig. 2). Three metrics correspond to the

timing of a growing season in a cycle and portray when the

season begins, reaches the peak and ends (D, E and F,

respectively, in Fig. 2), while another metric portrays season

length (G in Fig. 2). Two metrics represent the annual

integrated WDRVI and portray total vegetation production

and seasonally active vegetation (H and I, respectively, in

Fig. 2). Two metrics represent the rates of increase and

decrease of WDRVI in the growing season (J and K,

respectively, in Fig. 2). Detailed information on the definitions

and calculations of the metrics can be found elsewhere

(Jönsson & Eklundh, 2004; Tuanmu et al., 2010).

Predictor variables

To assess the effects of different land surface phenology

variables on the temporal transferability of habitat models, we

created four different variable sets and built panda habitat

models for two time frames. Each variable set contained either

the time series of smoothed WDRVI composites or the 11

phenology metrics, whose values were derived from single-year

or multi-year (i.e. 3-year) MODIS data (Table 1). For the

variables derived from multi-year data, the values of each

Figure 1 Location and topography of Wolong Nature Reserve, Sichuan Province, China. The locations of giant panda activity signs

recorded during the Third National Giant Panda Survey in 2001 and during wildlife surveys from 2006–2008 are also shown.

Temporal transferability of habitat models
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WDRVI composite or phenology metric were averaged over

3 years. Because multi-year averages smoothed out inter-

annual variability in variable values, the four variable sets

allowed us to assess not only the effects of variable type (i.e.

WDRVI or phenology metrics), but also those of inter-annual

variability on model transferability.

To represent land surface phenology in the first time frame

we used MODIS data acquired in 2001 or 3-year averages of

data acquired from 2001 to 2003 (Table 1). For the second

time frame we used data acquired in 2007 or 3-year averages of

data acquired from 2005 to 2007 (Table 1). For single-year

variable sets, phenology metrics could not be calculated for

some pixels (5.7% of total pixels for 2001 and 3.4% for 2007)

due to either a lack of detectable seasonal cycles or incomplete

cycles within a year. We excluded those pixels from further

analyses. For multi-year variable sets, we excluded pixels that

lacked phenology metrics in ‡ 2 years (0.8% of total pixels for

both 2001–03 and 2005–07 time periods) from further

analyses.

Using the values of 10,000 randomly selected pixels (c. 26%

of total pixels in the study area), we calculated Pearson’s

correlation coefficients for every pair of variables, and used

them as indicators of the degree of multicollinearity among

variables. With this procedure, a correlation matrix was

obtained for each variable set in each time frame.

Analytical design

The analytical design included three steps: (1) model devel-

opment, (2) habitat prediction, and (3) model evaluation

(Fig. 3). These steps are explained in the following sections.

Model development

We developed panda habitat models using the maximum

entropy algorithm (Maxent), a machine-learning approach

for making predictions from incomplete information (Phil-

lips et al., 2006; Maxent software, version 3.3.1). Maxent

estimates the probability of species presence by finding the

most uniform probability distribution (i.e. with the maxi-

mum entropy) as constrained by the data distribution of

predictor variables associated with confirmed species loca-

tions (Phillips et al., 2006; Phillips & Dudı́k, 2008). Maxent

uses presence-only data, and thus it is especially suitable for

mapping the distribution of species when confirmed absence

data are difficult to obtain, as is the case for the giant

panda.

Maxent contrasts the values of predictor variables associated

with species presence locations against the values of the same

variables for all available locations (i.e. background). We

randomly selected 10,000 pixels as a representation of the

entire study area (Phillips & Dudı́k, 2008), and defined the

background by only using pixels where giant pandas could

possibly occur following the suggestion of Phillips et al. (2009)

for single species applications. For this, as giant pandas seldom

occur in unforested areas (Schaller et al., 1985), the back-

ground was defined by pixels with forest cover according to a

binary forest cover map which was derived from a Landsat-5

Thematic Mapper (TM) image acquired on 13 June 2001 (Viña

et al., 2007) and resampled to the spatial resolution of the

MODIS data (i.e. 250 m).

Maxent derives and uses different forms of input variables

(i.e. feature types) to represent nonlinear and interactive

effects of predictor variables on species presence probability

(Phillips et al., 2006). The contributions of these derived

predictors to the model prediction are then evaluated during

model development, and only those having significant

contributions are retained in a final model (Phillips et al.,

2006). We used a combination of linear, quadratic and

product feature types, which represent the means, variances

and covariances of the predictor variables, respectively

(Phillips et al., 2006). The number of terms retained in the

final model was used as an indicator of the complexity of

model structure.

We developed four habitat models in two different time

frames (i.e. Time Frame 1 and Time Frame 2, Fig. 3) using

our two panda presence datasets. We considered a

250 · 250 m pixel as a confirmed presence pixel if it

contained at least one panda location according to field

surveys. Field datasets contained 399 and 220 presence pixels

in 2001 and 2006–08, respectively. For each dataset, we used

70% of the presence pixels for model development and the

remaining 30% for model evaluation (see below). In order to

reduce the effects of data partitioning on model outputs, we

randomly re-partitioned the data and created 20 different

data partitions for each field dataset. Twenty variants of each

model were then developed using these 20 partitions for each

time frame. This number of partitions was used because a

Figure 2 Two types of variables portraying land surface phe-

nology were used for developing giant panda habitat models:

smoothed values (triangles) of time series of the wide dynamic

range vegetation index (WDRVI) and phenology metrics (A–K)

derived from them. A, base level; B, maximum level; C, amplitude;

D, date of the start of the season; E, date of the middle of the

season; F, date of the end of the season; G, length of the season; H,

large integral; I, small integral; J, increase rate; and K, decrease

rate. This figure is modified from fig. 2 in Tuanmu et al. (2010).

M.-N. Tuanmu et al.
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previous study showed that the variation of model outputs

decreased with the increase in the number of partitions, but

changed negligibly with more than 20 partitions (Tuanmu

et al., 2010).

Habitat prediction

For each time frame, 20 variants of each model were used to

predict panda habitat within the time frame (i.e. within-time-

Figure 3 The analytical design included three steps: (1) model development (arrow with dotted line), (2) giant panda habitat prediction

(arrow with solid line), and (3) model evaluation (arrow with dashed line). (1) Panda habitat models were developed with four different sets of

land surface phenology (LSP) variables in two time frames (t1 and t2) using panda presence data collected in 2001 and 2006–08, respectively. (2)

The models were used to predict panda habitat within (WTP) and beyond the time frame (BTP) in which the models were developed. (3)

The habitat maps from WTP and BTP were evaluated using the presence data collected in the time frame in which the habitat was predicted.

Area under the receiver operating characteristic curve (AUC) and minimal predicted area (MPA) were calculated for the habitat maps from

both WTP (AUCt1t1, AUCt2t2, MPAt1t1, MPAt2t2) and BTP (AUCt1t2, AUCt2t1, MPAt1t2, MPAt2t1). The habitat maps from WTP and BTP were

compared (arrow with dashed-dotted line) within each time frame, and values of agreement coefficients (ACt1 or ACt2) and the proportions

of systematic disagreement (PSDt1 or PSDt2) were calculated. The AUC, AC and PSD values were then used to evaluate model transferability.

Table 1 Properties of giant panda habitat models developed with four different sets of land surface phenology variables in two time frames.

WDRVI Phenology metrics

Single-year (SYVI) Multi-year (MYVI) Single-year (SYPM) Multi-year (MYPM)

Variables

Time Frame 1 A time series of

smoothed WDRVI

in 2001

A time series of

smoothed WDRVI

averaged over

2001–03

Phenology metrics

in 2001

Phenology metrics

averaged over

2001–03

Time Frame 2 A time series of

smoothed WDRVI

in 2007

A time series of

smoothed WDRVI

averaged over

2005–07

Phenology metrics

in 2007

Phenology metrics

averaged over

2005–07

Number of variables (in both time frames) 23 23 11 11

Correlation coefficient between variables*

Time Frame 1 0.87 ± 0.01 0.90 ± 0.01 0.16 ± 0.12 0.20 ± 0.12

Time Frame 2 0.87 ± 0.01 0.90 ± 0.01 0.21 ± 0.13 0.18 ± 0.13

Number of terms in final models�
Time Frame 1 103.5 ± 3.3 84.9 ± 2.7 39.4 ± 1.6 34.0 ± 1.4

Time Frame 2 118.8 ± 4.0 96.7 ± 3.1 41.7 ± 2.1 40.7 ± 1.4

*Values were calculated between every pair of variables in the variable set and are shown as mean ± 2 standard errors from the mean.

�Values were calculated from 20 variants of the habitat models and are shown as mean ± 2 standard errors from the mean.

WDRVI, wide dynamic range vegetation index; SYVI, single-year vegetation index; MYVI, multi-year vegetation index; SYPM, single-year phenology

metrics; MYPM, multi-year phenology metrics.

Temporal transferability of habitat models
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frame prediction, WTP) and beyond the time frame (i.e.

beyond-time-frame prediction, BTP; Fig. 3). Therefore, in

each time frame, 80 panda presence probability maps (i.e. 4

models · 20 variants) were obtained from the WTP and 80

additional maps were obtained from the BTP (Fig. 3).

Model evaluation

To evaluate the accuracy of model predictions, we used both

threshold-independent and threshold-dependent methods.

The threshold-independent method consisted of a receiver

operating characteristic (ROC) curve analysis, a common

method for evaluating the accuracy of classification models

(Fielding & Bell, 1997). The area under the ROC curve (AUC)

provides a single-value measurement of model accuracy, with a

value of 1 indicating a perfect prediction and 0.5 indicating a

random prediction (Hanley & McNeil, 1982). In habitat

modelling, models with AUC values higher than 0.7 are

considered useful (Boyce et al., 2002).

The ROC curve analysis is typically conducted by contrast-

ing presence/absence data. Here, we calculated AUC values by

contrasting presence pixels with those randomly selected from

the study area (i.e. background pixels) as suggested by Phillips

et al. (2006) and used in other studies (e.g. Marini et al.,

2010). For each time frame, we used 30% of panda presence

pixels and the background pixels selected during model

development to calculate AUC values for both WTP and

BTP (Fig. 3). By contrasting presence to background data in

the ROC curve analysis, the maximum achievable AUC value is

< 1 and is negatively correlated with the proportion of actual

presence pixels in the background pixels, but the value of a

random prediction is still equal to 0.5 (Phillips et al., 2006).

Some concerns have been raised about the application of the

ROC curve analysis for comparing the accuracy of models

using different modelling approaches or among different

species, because AUC values are subject to the range of model

output values, the reliability of species presence and absence

data, and the delineation of a study area, especially when it is

used to define the background in presence-only models (Lobo

et al., 2008; Peterson et al., 2008). However, comparisons

among different AUC values performed in this study are

considered to be valid because all models were generated for

the same species, by the same modelling algorithm (i.e.

Maxent), within the same study area, and were generated and

validated with the same presence and background data.

The threshold-dependent evaluation method used was based

on the calculation of the minimal predicted area (MPA; Engler

et al., 2004). The MPA method evaluates model performance

based on the parsimony concept that a good model should

predict the smallest habitat area as possible (i.e. minimize

commission errors as much as possible), while its omission

errors are under control (Engler et al., 2004). Because the MPA

depends on the actual proportion of species habitat in a study

area, which is almost always unknown, it is only suitable for

comparing models generated for the same species in the same

area, as is the case in this study. In addition, it is relative

magnitudes of MPA among models, rather than absolute

values for individual models, that matter for evaluating model

performance. Following Engler et al. (2004), we defined a

threshold for each panda presence probability map so that

90% of presence locations in the validation dataset were

encompassed (i.e. 10% omission error). Instead of using

absolute area, we calculated the MPA as the ratio of the

number of above-threshold pixels to the total number of

pixels.

Model transferability

We evaluated the temporal transferability of panda habitat

models based on three criteria adapted from Randin et al.

(2006). First, a model with good temporal transferability

should have similar accuracy between its predictions within

and beyond the time frame corresponding to its development.

Therefore, for our analytical design (Fig. 3), there should be

similar accuracy between WTP in Time Frame 1 (t1) and BTP

in Time Frame 2 (t2), as well as between WTP in t2 and BTP in

t1. Second, the model should have similar performance no

matter which time frame it was developed in. That is, the

accuracy of WTP (or BTP) should be similar between t1 and t2

(Fig. 3). This criterion, together with the first criterion, implies

that the model should have similar transferability in both

transferring directions between the two time frames. Third,

besides model accuracy, the spatial patterns of predicted

habitat from within- and beyond-time-frame predictions

should also be similar. Therefore, the spatial patterns of

WTP and BTP in t1 (or t2) should match each other (Fig. 3).

To quantify temporal transferability based on these three

criteria, we calculated five indices for each of the four habitat

models. We calculated the single-direction (TIt1 fi t2 and

TIt2 fi t1) and overall transferability indices (TIoverall), which

were adapted from Randin et al. (2006) as:

TIt1!t2 ¼ 1� AUCt1t1 � AUCt1t2j j
0:5

; ð1Þ

TIt2!t1 ¼ 1� AUCt2t2 � AUCt2t1j j
0:5

; ð2Þ

TIoverall ¼
0:5� TIt1!t2 þ TIt2!t1ð Þ

1þ TIt1!t2 � TIt2!t1j j ; ð3Þ

where AUCt1t1 and AUCt2t2 are AUC values for WTP in t1 and

t2, respectively, and AUCt2t1 and AUCt1t2 are for BTP in the

two time frames, respectively (Fig. 3). TIt1 fi t2 and TIt2 fi t1

measure the ability of a model to be transferred from t1 to t2

and vice versa, respectively. They range from 0 to 1 as AUC

values are typically between 0.5 and 1, and they are closer to 1

when the AUC values for WTP and BTP are similar (i.e. high

transferability based on the first criterion). TIoverall measures

transferability in both directions and puts a penalty on the

difference between two directions. It also ranges from 0 and 1

and is closer to 1 when single-direction transferability indices

in both directions are higher and closer to each other (i.e. high

transferability based on the second criterion).

M.-N. Tuanmu et al.
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We compared the spatial patterns of WTP and BTP in each

time frame (Fig. 3), by calculating an agreement coefficient

(AC; Ji & Gallo, 2006) for each variant of each habitat model as:

AC¼1�
Pn

i¼1 Xi�Yið Þ2
Pn

i¼1 ½ �X� �Yj jþ Xi� �Xj jð Þ � �X� �Yj jþ Yi� �Yj jð Þ� ; ð4Þ

where Xi and Yi are pixel values (i.e. estimated panda presence

probability) of habitat maps from WTP and BTP, respectively;
�X and �Y are the mean values of Xi and Yi, respectively; and n is

the total number of pixels. AC is a standardized sum of

squared difference between Xi and Yi, and its maximum value

is 1, indicating a perfect agreement in pixel values between two

maps (Ji & Gallo, 2006).

Because two maps may have a low AC value even when they

show the same spatial patterns with different absolute pixel

values, we also calculated the proportion of systematic

disagreement (PSD), following Ji & Gallo (2006) as:

PSD ¼ 1�
Pn

i¼1 ½ Xi � X̂i

�� ��� �
� Yi � Ŷi

�� ��� �
�

Pn
i¼1 Xi � Yið Þ2

; ð5Þ

where X̂i and Ŷi are the estimated values of Xi and Yi,

respectively, from a linear regression between Xi and Yi, based

on a geometric mean functional relationship model. The

denominator of the main term of equation 5 measures the total

disagreement between Xi and Yi, and the numerator is the sum

of residuals from the regression line, which indicates non-

systematic or random disagreement. As PSD equals one minus

the ratio of non-systematic disagreement to total disagreement,

this index measures the proportion of systematic disagreement

captured by a linear regression between the pixel values in two

maps (Ji & Gallo, 2006). In our case, a higher PSD indicates

that a larger proportion of the disagreement between two

habitat maps is due to a linear shift of pixel values, and thus

the two maps show a more similar spatial pattern of habitat

but just with different absolute pixel values.

Model comparisons

We conducted the mixed-design analysis of variance (ANOVA)

for comparing AUC and MPA values among habitat models

with model variants as a random factor, and used paired t-tests

for pairwise comparisons. With the same random factor, we

used two-way ANOVA to evaluate the effects of land surface

phenology variable type and the length of original time-series

data used for generating them, as well as their interaction effects

on model transferability measured by TI (equations 1–3), AC

(equation 4) and PSD (equation 5). We used these parametric

statistical tests after verifying the validity of the normality

assumption with Shapiro–Wilks tests. All statistical tests were

conducted using R 2.10.1 (R Development Core Team, 2009).

RESULTS

Multicollinearity and model complexity

The correlation analysis among land surface phenology

variables in each variable set showed that smoothed time

series of WDRVI values, regardless of single- or multi-year

data, were highly correlated in both time frames, but

phenology metrics were less correlated with each other

(Table 1). In both time frames, the models developed with

phenology metrics or variables derived from multi-year time-

series data tended to have fewer terms, suggesting lower model

complexities (Table 1). In addition, each of the four models

tended to contain more terms when developed in t2 than in t1

(Table 1).

Model accuracy

According to the threshold-independent evaluation, all hab-

itat models had median AUC values ranging between 0.85

and 0.95 for predicting giant panda habitat within the time

frame of model development (i.e. WTP; Fig. 4a,c). In general,

accuracy decreased when models were used to predict habitat

beyond time frames (i.e. BTP), but all median AUC values

were still higher than 0.79, indicating that they constitute

useful models (Fig. 4b,d). Significant differences in AUC

values were found among the four habitat models in both

time frames (F = 11.96, 267.06, 194.53 and 489.49 for

AUCt1t1, AUCt1t2, AUCt2t2 and AUCt2t1, respectively; d.f. =

3, 57 and P < 10)5 for all). In t1, the multi-year vegetation

index (MYVI) and multi-year phenology metric (MYPM)

models had the highest predictive power within the time

frame (Fig. 4a), but the MYPM model was significantly better

than the MYVI model for beyond-time-frame predicting

(Fig. 4b). In t2, the MYVI model was significantly better for

both WTP and BTP, although the ranking of the MYPM

model improved when it was used for predicting habitat

beyond the time frame (Fig. 4c,d).

The threshold-dependent evaluation procedure showed very

similar patterns of model accuracy among the four models

(Fig. 4e–h; note the reversed y-axes). The major difference

from the threshold-independent evaluation was found when

the models developed in t1 were used for predicting habitat in

t2. While the MYPM model was the best in terms of AUC

values, the single-year vegetation index (SYVI) and MYVI

models were as good as the MYPM model in terms of MPA

values (Fig. 4b,f).

Model transferability

Transferability indices

Single-direction and overall transferability indices indicated

different transferabilities among the four habitat models. The

MYPM model had the highest values of all three transferability

indices (Fig. 5), indicating that it was the most transferable

among the four models in terms of model accuracy. Results of

the two-way ANOVA showed that both the variable type and

length of the original time series data had significant effects on

model transferability (Table 2). The models developed with

phenology metrics were more transferable than those with

time-series WDRVI, and the models developed with the

Temporal transferability of habitat models
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variables derived from multi-year data had higher transfer-

ability than those with the variables from single-year data

(Table 2).

Comparing the two single-direction transferability indices

indicated that model transferability was also different between

transferring directions (Fig. 5a,b). All models were less trans-

ferable from t2 to t1 than in the opposite direction (Fig. 5a,b).

Although the variable type and data length had the same effects

on transferability in both transferring directions, their relative

magnitudes were different. While the variable type was more

influential on TIt2 fi t1, the data length was more influential on

TIt1 fi t2 (Fig. 5a,b).

Agreement coefficient and proportion of systematic

disagreement

Regarding the match between spatial patterns of WTP and

BTP, significant differences in the ACs and the PSDs were

found among models (Fig. 6). For both time frames, the

habitat maps produced by the MYPM model showed the most

similar spatial patterns, indicated by both the highest agree-

ment in predicted panda presence probabilities (i.e. the highest

AC) and the highest proportion of disagreement that can be

captured by a linear regression (i.e. the highest PSD; Fig. 6).

This indicates that the MYPM was the most transferable

Figure 4 Box plots of the area under the receiver operating characteristic curve (AUC) and the minimal predicted area (MPA) for the giant

panda habitat models developed with four different land surface phenology variable sets (SYVI, MYVI, SYPM and MYPM in Table 1) in

two time frames (t1 and t2). The AUC and the MPA values were calculated from 20 variants of each habitat model when the model was

developed in t1 and used to predict habitat in t1 (a, e) and t2 (b, f), as well as developed in t2 and used to predict habitat in t2 (c, g) and

t1 (d, h). Each box plot shows the maximum, 75th percentile, median, 25th percentile and minimum values. Note that y-axes for the

MPA are reversed, because lower MPA values indicate higher model accuracies. The letters above box plots indicate the results of pairwise

comparisons conducted using paired t-tests. The alphabetical order shows the order of model accuracy from high to low. There is no

significant difference (P > 0.05 after the Holm–Bonferroni adjustment) between two models if they share the same letter.

M.-N. Tuanmu et al.
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among the four models in terms of the spatial patterns of

model predictions.

Land surface phenology variable type and length of original

time series both had significant effects on AC and PSD values

(Table 3). Using the variables derived from multi-year data as

predictors increased both AC and PSD values. Significant

interaction effects on PSD (Table 3) indicated that the effect of

data length was more influential on the models based on

phenology metrics (Fig. 6c,d).

The variable type affected AC and PSD differently. While

using phenology metrics as predictors increased the agreement

in the pixel values of habitat maps (i.e. AC), it reduced the

proportions of systematic disagreement in habitat predictions

(i.e. PSD; Table 3). However, the significant interaction effects

on PSD (Table 3) indicated that the negative effect of

phenology metrics was not influential when multi-year data

were used to generate the metrics (Fig. 6c,d).

DISCUSSION

Model transferability is an important characteristic of

empirical habitat models when they are used beyond the

area and time in which they were originally developed.

Diverse factors may affect the spatial or temporal transfer-

ability of habitat models, such as the environmental

variability of species habitat captured by field data (Thuiller

et al., 2004; Phillips, 2008; Bamford et al., 2009), the

relevance of predictor variables for describing underlying

processes affecting species distribution, especially for those

that vary across space or over time (Vanreusel et al., 2007;

Zharikov et al., 2009), the ability of modelling methods to

capture species–environment relationships (Araújo et al.,

2005; Randin et al., 2006) and the consistency of the

relationships across space (Zanini et al., 2009) and time

(Pearson & Dawson, 2003). By controlling other factors,

such as focusing on a single species, using the same field

data for model development and validation and using the

same modelling algorithm, we showed that the method

used to generate predictor variables, in particular from

remotely sensed data, has significant effects on model

transferability.

Effects of variable type on model transferability

Panda habitat models developed with phenology metrics,

especially when they were generated using multi-year data,

exhibited higher temporal transferability than those developed

with time series of WDRVI in terms of both model accuracy

and the spatial match in model predictions. The advantage of

using phenology metrics as predictor variables on model

transferability may be related to the reduction of (1) model

complexity and (2) multicollinearity among variables.

Our results showed that the models developed with time

series of WDRVI had a more complex structure than the

Figure 5 Mean values of the single-direction and overall transferability indices for the four giant panda habitat models. These models were

developed with either a time series of wide dynamic range vegetation index (VI) or phenology metrics (PM), which were derived from either

single-year (SY) or multi-year (MY) Moderate Resolution Imaging Spectroradiometer (MODIS) data. The indices were calculated from 20

variants of each habitat model for evaluating: (a) the ability of the model developed in Time Frame 1 (t1) to predict panda habitat in Time

Frame 2 (t2), (b) the ability of the model developed in t2 to predict habitat in t1, and (c) the overall ability of the model to predict habitat

beyond time frames. The error bars indicate 2 standard errors from the mean. The lines connecting two points do not imply any linear

relationship, but are provided to aid with the visualization of value differences.

Table 2 Analyses of variance (ANOVA) on the effects of variable type (Type) and the length of original time series data (Length), as well as

their interaction effects (Type · Length), on the single-direction and overall transferability indices calculated for the giant panda habitat

models developed with different land surface phenology variables.

TIt1fi t2 TIt2fi t1 TIoverall

Difference* F-value P-value Difference* F-value P-value Difference* F-value P-value

Type PM > VI 22.3 < 10)3 PM > VI 313.2 < 10)12 PM > VI 238.7 < 10)11

Length MY > SY 113.2 < 10)8 MY > SY 101.0 < 10)8 MY > SY 42.9 < 10)5

Type · Length 2.9 0.11 12.2 0.002 14.0 0.002

*PM, phenology metrics; VI, a time series of wide dynamic range vegetation index (WDRVI) values; MY, multi-year data; SY, single-year data.

Temporal transferability of habitat models
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models with phenology metrics. More complex models have a

higher chance of over-fitting the training data, and thus of

losing the ability to capture general relationships between

species occurrence and predictor variables thus reducing their

transferability (Araújo & Guisan, 2006; Randin et al., 2006).

Therefore, the lower risk of over-fitting caused by less complex

models is a likely reason for the higher transferability of the

models developed with phenology metrics.

Additionally, the models developed in t2 tended to be more

complex than t1 models. We also found that temporal

transferability was lower and the effects of variable type were

stronger when the models were applied from t2 to t1. The

lower transferability of t2 models may be due to an incomplete

environmental range of panda habitat captured by the field

data (Thuiller et al., 2004) because the panda presence data

were collected only in high-quality habitat within t2. However,

the relationships among higher model complexity, lower

transferability, and stronger effects of variable type for t2

models suggest that the lower transferability could also be

attributed to higher over-fitting risks caused by more complex

t2 models, and using phenology metrics in a habitat model can

reduce these risks and thus increase its transferability.

In regression models, multicollinearity influences the esti-

mation of coefficients and their standard errors, affects

significance tests on the coefficients, changes model structure

and thus reduces the robustness of the established species–

environment relationships in habitat models (Mac Nally, 2000;

Graham, 2003). Although no significance tests on coefficients

are involved in model development of non-regression-based

modelling approaches such as decision trees (Berk, 2006) or

Maxent, models developed with these approaches may not be

completely free of multicollinearity problems (Mac Nally,

2000). When models are used for predicting species habitats

for different areas or time periods, spatially or temporally

inconsistent correlations among predictor variables may

reduce the predictive ability of the established species–

environment relationships, even if they were determined with

statistically robust approaches. Therefore, multicollinearity

Table 3 Analyses of variance (ANOVA) on the effects of variable type (Type) and the length of original time series data (Length), as well as

their interaction effects (Type · Length), on agreement coefficients (AC) and proportions of systematic disagreement (PSD), which were

calculated from within- and beyond-time-frame predictions of giant panda habitat in the two time frames.

Time Frame 1 Time Frame 2

Difference* F-value P-value Difference* F-value P-value

AC

Type PM > VI 282.5 < 10)12 PM > VI 192.8 < 10)10

Length MY > SY 339.6 < 10)12 MY > SY 218.4 < 10)11

Type · Length 6.64 0.018 0.14 0.717

PSD

Type VI > PM 220.7 < 10)11 VI > PM 19.2 < 10)3

Length MY > SY 365.1 < 10)13 MY > SY 2079.6 < 10)16

Type · Length 552.7 < 10)14 72.5 < 10)7

*PM, phenology metrics; VI, a time series of wide dynamic range vegetation index (WDRVI) values; MY, multi-year data; SY, single-year data.

Figure 6 Mean values of agreement coeffi-

cients (AC) and the proportions of systematic

disagreement (PSD) for the four giant panda

habitat models. These models were developed

with either a time series of wide dynamic

range vegetation index (VI) or phenology

metrics (PM), which were derived from

either single-year (SY) or multi-year (MY)

Moderate Resolution Imaging Spectroradi-

ometer (MODIS) data. The values of AC and

PSD were calculated between the maps gen-

erated from within- and beyond-time-frame

predictions for the panda habitat in Time

Frame 1 (a, c, respectively) and in Time

Frame 2 (b, d, respectively). The error bars

indicate 2 standard errors from the mean.

The lines connecting two points do not imply

any linear relationship, but are provided to

aid with the visualization of value differences.
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reduction by using phenology metrics may also be the reason

for their positive effects on model transferability.

Although several approaches can be used to reduce over-

fitting and multicollinearity, they are not suitable for the

habitat models developed with land surface phenology vari-

ables. For instance, one common approach is to remove highly

correlated variables based on their biological importance for

the species of interest (Graham, 2003). However, for a time

series of remotely sensed data representing land surface

phenology, all variables are highly correlated (e.g. the lowest

correlation coefficient was 0.73 in this study). Therefore, even

if only two variables are selected from the time series,

multicollinearity may still exist. In addition, with the selection

of fewer variables, less information on land surface phenology

can be represented.

Principal components analyses are also commonly used for

solving multicollinearity and over-fitting problems (Graham,

2003; Aguilera et al., 2006), and are useful in models predict-

ing habitat within the same area and time frame corresponding

to model development (e.g. Viña et al., 2010). However, the

combinations of predictor variables in principal components

are data-dependent and thus subject to change through time

(Schowengerdt, 2007). As variable values change over time, the

inconstancy of principal components may limit their utility for

predicting habitat beyond the time frame of model develop-

ment. Fixed combinations of variables, such as the tasselled-

cap transformation commonly used in digital image processing

of remotely sensed imagery (Schowengerdt, 2007), may be

useful for predicting habitat changes over time. However,

finding general and meaningful tasselled-cap components that

reflect the underlying processes determining habitat quality

and driving its change is quite challenging.

Effects of time-series length on model transferability

Our results showed that length of original time-series data had

significant effects on both model accuracy and transferability.

The models developed with variables derived from multi-year

remotely sensed data had higher accuracy for both within and

beyond time-frame predictions and had higher temporal

transferability than those with variables derived from single-

year data. The major advantage of using multi-year data is in

smoothing inter-annual variability of the biophysical and

phenological characteristics of the vegetation caused by inter-

annual climatic fluctuations (Ichii et al., 2002), which may not

reflect real habitat changes. For example, while higher vege-

tation index values in one year may correspond to higher

temperatures (Ichii et al., 2002), this may not indicate long-

term changes in the quality of panda habitat. Thus, a habitat

model that uses land surface phenology variables derived from

single-year data may be affected by the particularities of that

year and thus lose its temporal transferability. In addition,

different plant species may have different responses to inter-

annual fluctuations of climatic conditions, which may cause

more non-systematic disagreements in habitat predictions of

the models with variables derived from single-year data.

High sensitivity to inter-annual variability of vegetation

characteristics is not specific to models developed with land

surface phenology variables. Any model using remotely sensed

data to reflect vegetation information may have the same

problem when used for studying temporal dynamics of species

habitat. While average values of climatic variables over several

years are commonly used in habitat models to reflect long-

term climatic conditions, variables derived from single-year

remotely sensed data or even a single image are often used in

habitat models (e.g. Zimmermann et al., 2007), mostly due to

the limited availability of remotely sensed data. While incor-

porating remote sensing variables into habitat models can

improve model accuracy for the time period corresponding to

model development (Zimmermann et al., 2007), predicting

species habitat across time frames and using these results to

monitor habitat dynamics should be undertaken with caution.

As some high-temporal-resolution remotely sensed data (e.g.

MODIS data) and multi-temporal data of median spatial

resolution [e.g. Landsat TM, Landsat Enhanced Thematic

Mapper Plus (ETM+), and Advanced Land Observation

Satellite (ALOS)] are becoming increasingly available, variables

derived from multi-season and multi-year data appear to be

more appropriate for monitoring temporal dynamics of species

habitat at broader spatial and longer temporal scales.

The usefulness of land surface phenology for

mapping and monitoring species habitats

Our study showed that land surface phenology is useful for

characterizing giant panda habitat and also monitoring its

temporal dynamics. Forest cover, understorey bamboo, topog-

raphy and human disturbance are the most important

documented determinants of panda habitat (Liu et al., 2001;

Bearer et al., 2008). Land surface phenology not only reflects

different land-cover types and their dynamics (de Beurs &

Henebry, 2004; Beck et al., 2006), but it also reflects the

characteristics of understorey bamboo occurring under the

forest canopy (Viña et al., 2008; Tuanmu et al., 2010). In

addition, human disturbance of panda habitat is usually

associated with land cover or vegetation change (Liu et al.,

2001; Bearer et al., 2008). Therefore, besides capturing the

characteristics of vegetation that is suitable for the giant panda

(Viña et al., 2008, 2010), land surface phenology may also

capture its temporal dynamics due to human disturbance.

While previous studies have found land surface phenology data

to be useful for detecting vegetation changes due to human

and natural disturbances (Eklundh et al., 2009; Koltunov et al.,

2009), this study showed that changes in land surface

phenology could be directly linked to changes in wildlife

habitat through the use of habitat models.

However, the usefulness of different land surface phenology

variables depends on their application. Because the habitat

model developed with a time series of WDRVI derived from

multi-year MODIS data (i.e. the MYVI model) can produce

the most accurate habitat maps in the time frame during which

the model was developed, it is a good tool for evaluating the

Temporal transferability of habitat models
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habitat conditions in that particular time frame (e.g. Viña

et al., 2010). Alternatively, the model developed with multi-

year phenology metrics (i.e. the MYPM model) reduced the

problem of multicollinearity and the risk of over-fitting, and

thus it appears to be the best in terms of temporal transfer-

ability. Therefore, the MYPM model constitutes a suitable tool

for monitoring the temporal dynamics of giant panda habitat

and providing essential information for the conservation of the

species.

Under changing environments, monitoring the temporal

dynamics of species habitats at regional or global scales is

essential for reducing biodiversity loss and maintaining

sustainable ecosystem services (Balmford et al., 2003; Pereira

& Cooper, 2006; Lengyel et al., 2008). Combining remote

sensing and habitat modelling provides a practical and efficient

tool for monitoring the temporal dynamics of biodiversity and

species habitats at different spatial and temporal scales (Pereira

& Cooper, 2006; Lengyel et al., 2008). In particular, land

surface phenology has been found to be sensitive to vegetation

changes due to short-term human and natural disturbances

(Eklundh et al., 2009; Koltunov et al., 2009) and long-term

climate changes (Zhang et al., 2004; Morisette et al., 2009).

Phenology-based models have also been successfully applied to

predicting species habitat at different spatial scales (Morisette

et al., 2006; Tuanmu et al., 2010; Viña et al., 2010). Therefore,

the combination of land surface phenology and habitat

modelling constitutes an excellent tool for biodiversity con-

servation under changing environments.

Although we used giant panda in the Wolong Nature

Reserve as a case study, the approaches and conservation

implications of this study can go beyond this specific species,

geographical area and spatial scale. Previous studies have

shown considerable variability in model transferability among

species (Randin et al., 2006). However, the direct causes

indicated in this study underlying the differences in transfer-

ability among models (i.e. model complexity, multicollinearity

among variables and relevance of variables to habitat quality

and its change) have also been reported in other studies (Mac

Nally, 2000; Randin et al., 2006; Peterson et al., 2007;

Vanreusel et al., 2007; Zharikov et al., 2009). Therefore, we

believe that the suggestions provided for increasing model

transferability (i.e. using phenology metrics and multi-year

remotely sensed data) can be generally applied for modelling

the habitat of many other species in different geographical

settings. This is important, as model transferability cannot be

directly evaluated for many species, particularly endangered

species, due to low availability of field data collected over

multiple years. In such cases, habitat models developed using

remotely sensed data may still be useful for habitat monitoring

if the suggestions provided in this study are taken into

consideration.
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