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A B S T R A C T

To feed the world’s growing population, more food needs to be produced using currently available cropland. In
addition to yield increase, increasing cropping intensity may provide another promising opportunity to boost
global crop production. However, spatially explicit information on the cropping intensity gap (CIG) of current
global croplands is lacking. Here, we developed the first spatially explicit approach to measure the global CIG,
which represents the difference between the potential and actual cropping intensity. Results indicate that the
global average CIG around the year 2010 was 0.48 and 0.17 for the temperature- and temperature/precipitation-
limited scenarios, respectively. Surprisingly, global harvest areas can be expanded by another 7.36million km2

and 2.71million km2 (37.55% and 13.83% of current global cropland) under the two scenarios, respectively.
This will largely compensate the future global cropland loss due to increasing urbanization and industrialization.
Latin America has the largest potential to expand its harvest area by closing the CIGs, followed by Asia. Some
countries in Africa have a large CIG, meaning that some additional harvests can potentially be achieved. Our
analysis suggests that reducing the CIG would provide a potential strategy to increase global food production
without cropland expansion, thus also helping achieve other Sustainable Development Goals such as biodiversity
conservation and climate change mitigation.

1. Introduction

The Sustainable Development Goals of the United Nations adopted
in 2015 articulate a road map to “the future we want” in terms of
human welfare and environmental sustainability (Obersteiner et al.,
2016; Gao and Bryan, 2017). One of these 17 ambitious goals is to end
global starvation and achieve zero hunger by 2030. However, this goal
faces great challenges as global demand for food production continues
to increase due to global population growth, changes in diets, and
biofuel consumption (Godfray et al., 2010; Kastner et al., 2012). Several
estimations show that global agricultural production may need to grow
by 70–110% to meet the increasing demands associated with human
uses and livestock feed by 2050 (Alexandratos, 2009; Tilman et al.,
2011). This requires searching for effective strategies to raise future
food production (Erb et al., 2016).

Agricultural land expansion or extensification has made a great
contribution to past increases in global food production (Macedo et al.,
2012; Levers et al., 2016). However, further extensification of cropland
in future, often through altering natural ecosystems through land

clearing, seems to be unlikely because cultivation of this potentially
available land is at odds with efforts toward biodiversity conservation,
greenhouse gas emission mitigations, and the management of regional
climate and hydrological changes, and would incur high costs asso-
ciated with the provision of necessary infrastructure. Thus, the most
likely scenario is that more food needs to be produced from the same
amount of (or even less) land through the intensive use of cropland (Wu
et al., 2014a,b). Agricultural intensification is normally achieved either
by increasing the yield per unit area of individual crops or by increasing
the number of crops sown on a particular area of land, or both (Gregory
et al., 2002).

Numerous studies have revealed a large yield gap and proposed
solutions for closing this gap by growing adoption/application of fer-
tilizers, irrigation, mechanization, and improved seed varieties (Licker
et al., 2010; Neumann et al., 2010; Mueller et al., 2012; Kravchenko
et al., 2017). However, while acknowledging the great implications of
crop yield growth for global food security, some scientists doubt its
ability to meet increasing future food demand (Pugh et al., 2016). Al-
though yields continue to increase in many areas, yields also either

https://doi.org/10.1016/j.landusepol.2018.02.032
Received 4 September 2017; Received in revised form 4 February 2018; Accepted 16 February 2018

⁎ Corresponding author.
E-mail addresses: wuwenbin@caas.cn (W. Wu), Liuji@msu.edu (J. Liu).

Land Use Policy xxx (xxxx) xxx–xxx

0264-8377/ © 2018 Elsevier Ltd. All rights reserved.

Please cite this article as: Wu, W., Land Use Policy (2018), https://doi.org/10.1016/j.landusepol.2018.02.032



never improve, stagnate, or collapse in other areas (accounting for
about 25% of global croplands) (Ray et al., 2012; Grassini et al., 2013).
Projections on future yields found that yield increase is obviously less
than the expected annual growth rate required to double global pro-
duction by 2050 (Ray et al., 2013). This could be the real future si-
tuation because it becomes more difficult to sustain further yield in-
creases as farmers’ yields approach the potential threshold.
Furthermore, how best to close the yield gap largely depends on the
capacity of local farmers to access and use seeds, water, nutrients, pest
management, soils, and knowledge, all of which face considerable
technical and/or market constraints, such as high input costs or low
returns from increased production. Closing yield gaps is also associated
with uncertain impacts on the environment and the potential for ne-
gative feedback effects that could undermine future food production
(Foley et al., 2011).

More intensive use of existing croplands by increasing cropping
intensity may provide a possible alternative for increasing global food
production (Dias et al., 2016; Meng et al., 2017). An increase in crop-
ping intensity by increasing the number of crops per cropping cycle or
intercropping with other crops can increase the frequency of harvests
each year, resulting in increased food supplies without additional
cropland expansion (Mauser et al., 2015). Numerous studies have as-
sessed cropping intensity potential using climatic indicators (IIASA/
FAO, 2012; Liu et al., 2013a,b; Zhang et al., 2013; Yang et al., 2015) or
to map the actual cropping intensity across space using multiscale re-
mote sensing data or by integrating remote sensing and consensus data
(Galford et al., 2008; Siebert et al., 2010; Biradar and Xiao, 2011; Jain
et al., 2013; Langeveld et al., 2014; Zuo et al., 2014). These studies
generally focusing on either actual or potential cropping intensity have
helped to shed light on the status of cropping intensity and its con-
tribution to global production growth, while the global-scale gap be-
tween actual and potential cropping intensity remains little explored.
Ray and Foley (2013) analyzed the “harvest gap”, that is, the gap be-
tween the maximum harvest frequency that is theoretically possible and
the harvest frequency seen today. However, they computed the max-
imum harvest frequency using only a temperature variable and ex-
cluded the significant impacts of precipitation. Moreover, their study
used FAO agricultural statistics to calculate actual harvest frequency,
which was restricted to a country-level analysis, thereby ignoring the
spatial heterogeneity, in particular in large countries such as China,
India, and the United States. Furthermore, the FAO agricultural statis-
tics were taken from different and inconsistent data sources. This may
create some inconsistencies in the results and may introduce errors such
as underestimation in some places and overestimation in others. Spa-
tially explicit and accurate information on the cropping intensity gap
(CIG) is thus critically needed as it can help to identify regions that can

harvest their croplands more frequently and those that have the po-
tential to increase harvest areas by a more intensive use of their
standing croplands to achieve the Sustainable Development Goals (Yu
et al., 2017).

The objective of this study is thus to propose a spatially explicit
approach to exploring the global CIG in 2010. We used an adapted
IIASA/FAO GAEZ approach to calculate potential harvest frequency
(HFp) and satellite observation data consistently to map actual harvest
frequency (HFa) at a grid level. The results of HFp and HFa were then
aggregated to calculate the potential cropping intensity (CIp) and the
actual cropping intensity (CIa), as well as the CIG for individual coun-
tries. Using this CIG, we finally identified regions where a large po-
tential CIG exists, and evaluated the case for increasing cropping in-
tensity to expand the harvest areas without cropland expansion.

2. Methods and materials

2.1. The CIG concept

CIG was introduced here to measure the amount of incremental
cropping intensity that is possibly available if all croplands in a given
region are fully intensively used. Intensive use of cropland is wide-
spread across the world. Several concepts, e.g., harvest/cropping fre-
quency, cropping intensity, multiple cropping index, exist as a proxy for
cropland use intensity (Iizumi and Ramankutty, 2015; Stephan et al.,
2016; Yu et al., 2018). Harvest/cropping frequency, normally expressed
in integer numbers, measures the number of harvests of a particular
plot or field in one specific year (Fig. 1a). Cropping intensity is essen-
tially related to what other scientists have called “multiple cropping”
and is defined as the ratio of the sum of the annual harvested area to
total cropland for a given region or administrative unit. It is expressed
as an average value in floating numbers, which is slightly different from
harvest frequency (Fig. 1b). In the current study, the terminology of
cropping intensity is preferable as the main objective is to understand
the CIGs at regional to global scales, rather than field or plot level. The
CIG can then be conceptualized as the difference between the potential
cropping intensity (CIp) and the actual cropping intensity (CIa) in a
given spatial unit. However, the potential harvest frequency (HFp) and
the actual harvest frequency (HFa) for each grid cell of cropland need to
be first determined.

2.2. Measuring potential harvest frequency

To estimate the regional CIp, the HFp for each grid of cropland was
first determined. Theoretically, the success of a crop harvest for a plot
or field of land is critically dependent on the crops in question and the

Fig. 1. Illustration of the concept of harvest frequency and cropping intensity gap.
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climatic conditions, as each crop requires a specific type of growing
season—warm temperatures for a sufficiently long time—for the suc-
cessful completion of all stages in the life cycle for sequentially grown
crops: germination, growth, floral initiation, grain filling, and maturity.
With this assumption, we used an adapted GAEZ model in this study
(IIASA/FAO, 2012; see Supplementary Methods of measuring cropping
intensity gap). This model adopted a simple matching procedure to
estimate the HFp by comparing the individual crop demands with the
surrounding climatic supply (Fig. 2).

On the demand side, we focused our analysis on four widespread
crops (rice, wheat, maize, and soybean) (Table S1), and traditional
sequential cropping practice across the world to estimate a more rea-
listic HFp. For the four crops considered, crop rotations or combinations
can be very flexible. Here, we considered those widespread crop rota-
tions across the globe to ensure that the algorithm uses typical cropping
sequences in cultivation cycles. As a result, different harvest frequency
and its crop rotations were finally determined, and the corresponding
climatic requirements were calculated (Table 1). On the supply side, we
used growing degree days (GDD) as a heat indicator and introduced
precipitation as a water indicator and the climatic characteristics for
each grid of cropland were calculated in a standard GIS software en-
vironment (ESRI ArcGIS 9.1) (Figs. S1 and S2). Soil and topography
were assumed not to be the major limiting factors given the fact that
these croplands are already under cultivation for different crops. Fi-
nally, the climatic requirements of individual crops and crop rotations
were matched with the climatic supply. The C programming language
was used to develop the matching program, allowing the model directly
to access the multiple GIS grid format data and text format data. When
both thermal and water supply characteristics in a grid cell matched

well with those of crop requirements, the HFp was considered possible
for that grid cell.

2.3. Measuring actual harvest frequency

We used time-series satellite data to derive HFa (see Supplementary
Methods of measuring cropping intensity gap), which corresponds with
the general framework widely adopted by previous studies (Heller
et al., 2012; Jain et al., 2013). It is recognized that time series of sa-
tellite signals measure well the seasonal variations in crop growth cycle.
Each crop normally exhibits a behavior of an annual cycle, that is, it
continuously grows from the stage of green-up to the stage of maturity
and after that, it begins senescence until its harvest stage. Corre-
spondingly, the time-series data of that crop follow an annual cycle of
increase and decline: they increase quickly at the outset of the growing
season, reach the maximum value at the mature stage, and then decline
rapidly until reaching a very low level at its harvest. With this, the
entire cycle of growing season has one maximum in time-series data,
although it tends to vary across space and time. It is thus possible to
detect HFa or the numbers of crops grown each year using the time-
series data.

It should be noted that mapping HFa requires time-series data with
good time resolution, over homogeneous areas that are cloud-free and
not affected by atmospheric and geometric effects and variations in
sensor characteristics. In this study, asymmetric Gaussian function fit-
ting was first used to minimize the perturbations and reduce con-
tamination in the time-series data (Jönsson and Eklundh, 2002). (Fig.
S3). We then extracted the number of local maximums over the course
of one growing year from the smoothed time-series data. A local max-
imum was defined as having a higher value than the three points before
and three points after that point. The sensitivity of the asymmetric
Gaussian function fitting method to small maximums in portions of the
time series where the vegetation index range is low may slightly am-
plify small real peaks, thereby creating false peaks in the smoothed time
series. We removed these false detections by preventing values of 0.4
normalized difference vegetation index (NDVI) or below from being
detected as local maximums, following previous studies (Sakamoto
et al., 2005; Galford et al., 2008) (Fig. 3). The amplitude of the second
maximum in Fig. 3a is too small and is likely caused by the existence of
weeds or other green cover. In such cases, although there are two local
maximums, the HFa is set to one, i.e., single cropping pattern. Com-
pared with Fig. 3a, the amplitude of the second maximum in Fig. 3b is
relatively large and exceeds a certain fraction of the amplitude of the
first maximum; the number of annual seasons is thus set at two, which
corresponds to two harvests.

Fig. 2. A matching procedure for estimating potential harvest frequency.

Table 1
Different potential harvest frequency, crop rotations/combinations, and thermal and
water requirements.

Potential harvest
frequency (HFp)

Crop rotations/
combinations

Annual
GDD (°C)

Annual precipitation
(mm)

No cropping – ≤1600 ≤300
Single cropping winter wheat or

spring wheat
≥1600 ≥300

Double cropping – ≥3600 ≥600
winter wheat/maize
or soybean

≥4300 ≥730

winter wheat/rice ≥4700 ≥1000
maize/soybean ≥4800 ≥710
rice/rice ≥5100 ≥1300

Triple cropping rice/rice/rice ≥7000 ≥1850

W. Wu et al. Land Use Policy xxx (xxxx) xxx–xxx

3



2.4. Assessment of CIG

The results of HFp and HFa in raster format were then aggregated to
calculate the CIp and CIa for individual countries. We finally combined
the CIp and CIa to compute the country-level CIG as well as harvest area
gap, which indicates the extra harvest area that can be expanded by
increasing cropping intensity without a need for cropland expansion:

∑
=

n
CI

HF
,p

pi

(1)

∑
=

n
CI

HF
,a

ai

(2)

CIG=CIp− CIa+ e, (3)

HAG=CIG×CL, (4)

where HFpi and HFai indicate the potential and actual harvest frequency
for cropland grid i= 1,2,3…n, and n indicates the number of cropland
grids within that country. CIp is the maximum potential cropping in-
tensity when all croplands are exploited as intensively as possible, CIa is
the actual cropping intensity achieved under current biophysical and
socioeconomic constraints, and e is a term to correct those cases where
CIa > CIp, which is possible due to greenhouse agriculture and data
errors. In these cases, the negative CIG values are set to zero, meaning
that there is no intensity gap left. HAG is the harvest area gap (or extra
harvest area) for one country, while CL is the total cropland area for
that country.

2.5. Data preparation

This study was carried out for the year 2010 with respect to the
availability of used data, which can ensure a good consistency of input
datasets. The HFp of global croplands was estimated using the global
climate dataset of the Climate Research Unit (CRU) of the University of
East Anglia (Harris et al., 2014). This dataset represents the monthly
mean climate conditions interpolated from observed station data for the
period 1901–2015, and is provided in a grid format with a resolution of
0.5 ° latitude/longitude. The variables of interest used in this study are
monthly temperature and precipitation.

To map the HFa, global NDVI datasets for the period January 2009
to December 2011 at a spatial resolution of 8 km and 15-day interval
were collected from the NASA third-generation Global Inventory
Monitoring and Modeling System (GIMMS) derived from the NOAA-
AVHRR series satellites. The GIMMS NDVI3g dataset has a similar

spatial resolution to the CRU climate dataset and is widely used for
global vegetation monitoring due to its long-term data archives. These
NDVI3g datasets have been corrected to remove some nonvegetation
effects caused by sensor degradation, clouds, and stratospheric aerosol
loadings from volcanic eruptions. Detailed information on the proces-
sing and quality issues of the GIMMS dataset can be found in Tucker
et al. (2005).

The MODIS global land cover dataset for 2010 was obtained from
Boston University and was used to extract global cropland distribution
(Friedl et al., 2010). Previous work showed that the global MODIS
dataset had a better accuracy in cropland mapping than other global
datasets (Wu et al., 2008, Lu et al., 2016). This dataset with the basic
IGBP classification scheme contains 17 classes, including two classifi-
cations of cropland, i.e., “cropland” and “cropland/natural vegetation
mosaic.” To be consistent with the GIMMS NDVI3g dataset, we used the
majority-rule approach to aggregate the 500m MODIS data to the
coarser spatial resolution. This approach searches for the land cover
type with the highest frequency within the new coarser grid cell (Wu
et al., 2008). In addition, the Global Hunger Index (GHI) (von Grebmer
et al., 2013) was used here to investigate whether closing CIGs can play
a potentially important role in increasing food production in those food-
insecure countries.

3. Results

3.1. Potential cropping intensity

The HFp for current global cropland was estimated from the po-
tential crop rotations/combinations under current climatic conditions
(Fig. S4) and mapped into three major types: no cropping, single
cropping per year, and double cropping per year (including triple rice
cropping due to its low percentage areas). Fig. 4 shows the distribution
of HFp under the temperature- and temperature/precipitation-limited
scenarios. If temperature constraints alone were taken into account in
the climatic model, all cropland in the southern hemisphere and most of
the cropland in the northern hemisphere can be potentially used for
double cropping, while cropland in high-latitude regions of the
northern hemisphere is suitable only for single cropping (Fig. 4a). This
is not surprising, as the boreal regions are normally too cold for culti-
vation; the temperate zones have sufficiently warm periods for many
crops, while the tropics have adequately warm temperatures
throughout the year. Globally, the aggregated areas of cropland po-
tential for single and double cropping are 8.8 and 11.2 million km2,
respectively. However, when precipitation was included as another
constraint factor in the climatic model (Fig. 4b), the total areas of global
cropland potentially used for single and double cropping under the

Fig. 3. Local maximums and actual harvest frequency detected from smoothed time-series data.
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contemporary climate were estimated to be 14.1 and 5.9million km2,
respectively. Thus, the potential double cropping areas are significantly
lower than those in Fig. 4a.

The CIp between temperature- and temperature/precipitation-lim-
ited scenarios shows significant differences around the world. Under
the temperature-limited scenario (Fig. 5a), the globally averaged
maximum CIp is ≈1.74 (Table 2). Most countries around the world
except for those located in the northern high-latitude regions have a
high CIp. Under the temperature/precipitation-limited scenario
(Fig. 5b), the globally averaged maximum CIp is ≈1.42 and decreased
by about 18.4% (Table 2). Latin America has the largest CIp (1.89),
followed by Africa (1.50), Asia (1.48), and Oceania (1.43). Europe
(1.04) and North America (1.15) have a relatively low CIp. The limited
rainfall leads to a decrease of the CIp of 24.8%, 19.8%, 23.9%, 5.5%,
12.6%, and 23.7% for Africa, Asia, Europe, Latin America, North
America, and Oceania, respectively. This indicates that precipitation is
of great importance when determining the potential cropping intensity
for some regions (e.g., subtropical deserts of Africa, semiarid and arid
regions of Asia and Australia) where there are sufficiently warm tem-
peratures throughout the year, but a lack of precipitation. We also
found that several countries globally—in Africa and Asia, and especially
in Latin America—are able to harvest their standing cropland about
twice every year.

3.2. Actual cropping intensity

The HFa of current global cropland derived from GIMMS NDVI3g
datasets is shown in Fig. 6. In general, single cropping occurs
throughout all cultivated areas worldwide, but it is most common in
middle- and high-latitude regions in the northern hemisphere. The re-
gions that can produce two crops per year are geographically converged
and located in countries in Asia and North America (such as China,
India, and the USA), as well as in some regions of Europe and Australia.
For the globe as a whole, the total areas aggregated from satellite ob-
servation for single and double cropping are 15.7 million km2 and
4.6 million km2, respectively.

Fig. 7 shows the calculated CIa for individual countries. Globally,
the average CIa is ≈1.26 (Table 2). The highest values of CIa are in
Oceania (1.44), Asia (1.30), and Africa (1.29), and the lowest in North
America (1.11). Latin America also has a high CIa (1.27). In South and
Southeast Asia, about one-third of the cropland is irrigated, which is
one of the reasons why the average CIa in Asia is considerably higher
than in the other regions. China has a significantly high CIa of 1.37,
whereas India has a CIa of 1.36. Several African countries along the
equator, such as Kenya, Tanzania, Ethiopia, and the Congo, have a high
CIa. Ecuador and Colombia in South America also show a relatively high
CIa.

Fig. 4. Potential harvest frequency for current global croplands at grid level. (a) Under temperature constraint; (b) under both temperature and precipitation constraints.
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3.3. CIG

The global average CIG is 0.48 and 0.17 for the temperature- and
temperature/precipitation-limited conditions, respectively (Fig. 8,
Table 2). This difference is largely due to the considerable CIp decrease
caused by the precipitation constraint.

At the continental level, Latin America has the largest concentration
of CIG under both scenarios, followed by Africa and Asia (Table 2).
Thus, extra increases in harvest areas each year are theoretically pos-
sible in these regions through intensifying cropping systems alone.
Europe and North America, however, have limited CIG, particularly
under the temperature and precipitation constraints. Indeed, adoption

rates of new agricultural technologies or management measures such as
irrigation, pesticides, and fertilizers are very high in these developed
regions, which may mitigate the limiting effect of climate and result in
bringing more croplands into multiple cropping. Thus, these regions are
harvesting their standing croplands more frequently or closer to the
maximum CIp.

Several countries across the globe have a significant CIG. Latin
American countries such as Colombia, Chile, Argentina, Mexico,
Uruguay, Venezuela, Guatemala, Brazil, and Panama have a CIG of
more than 0.5, which suggests that another harvest every two years is
theoretically possible, while the gaps in Cuba and Nicaragua are higher
at around 0.9, which roughly means a possible extra harvest every year.
Several important agricultural countries in South and Southeast Asia,
such as Thailand, the Philippines, Malaysia, Indonesia, Vietnam, and
Myanmar, also have a CIG of 0.5–0.9, suggesting that these countries
have some potential to increase the annual food production per unit of
cropland through land use intensification. In Africa, some countries,
such as Ethiopia, the Congo, the Central African Republic, Tanzania,
Zambia, Madagascar, and Guinea, have a large CIG, which means that
some additional harvests can potentially be achieved.

3.4. Extra harvest areas by closing CIGs

The HAG gained under the assumption that the CIG is closed differs
between regions (Fig. 9). Global harvest areas can be boosted by
7.36million km2 and 2.71million km2 (37.55% and 13.83% of current
global cropland) under the temperature- and temperature/precipita-
tion-limited scenarios, respectively, although extra harvests may not

Fig. 5. Potential cropping intensity for individual countries. (a) Under temperature constraint; (b) under both temperature and precipitation constraints.

Table 2
Regional potential cropping intensity, actual cropping intensity, and cropping intensity
gap.

Regions CIp-1 CIp-2 CIa CIG-1 CIG-2

Africa 2.00 1.50 1.29 0.71 0.21
Asia 1.85 1.48 1.30 0.55 0.18
Europe 1.37 1.04 1.17 0.20 0.01
Latin America 2.00 1.89 1.27 0.72 0.61
North America 1.32 1.15 1.11 0.21 0.04
Oceania 1.88 1.43 1.44 0.44 0.01
Global 1.74 1.42 1.26 0.48 0.17

Note: CIp-1 is the potential cropping intensity under temperature constraint; CIp-2 is the
potential cropping intensity under temperature and precipitation constraint, CIa is the
actual cropping intensity in this study, CIG-1 is the difference between CIp-1 and CIa, and
CIG-2 is the difference between CIp-2 and CIa.

W. Wu et al. Land Use Policy xxx (xxxx) xxx–xxx

6



retain the same productivity because investments for a second crop may
be less profitable at least in the short term. Latin America has the largest
potential to achieve extra harvest area (more than 1.28million km2) by
closing CIGs, followed by Asia (1.00million km2). Although Africa has a
high CIG (Table 2), the absolute quantity of additional harvest area by
closing the CIG is smaller than that of Latin America and Asia, largely
due to its low percentage of cropland distribution. Europe and Oceania
can barely gain any additional harvest area.

4. Discussion

4.1. Comparison with other studies

We first compared our CIa in 2010 with those in 2000 estimated by
Siebert et al. (2010) using the global MIRCA2000 dataset on monthly
irrigated and rain-fed crop areas. It is believed that the temporal dif-
ference between these two studies has less impact on the comparison as
the rates of change in the global average of cropping intensity for the
period of 2000–2010 largely remain unchanged (Ray and Foley, 2013).
Table 3 shows that, in general, the global average of CIa between Sie-
bert et al. and our study is slightly different: 1.13 versus 1.26, respec-
tively. These two results are quite consistent in Asia, which has a high
CIa among the regions. The major difference occurs in Africa and
America, for which there are two possible reasons. One is that the CIa
by Siebert et al. was based on the MIRCA2000 dataset on irrigated and
rain-fed crop areas; this dataset has limited crop coverage of 26 crops

and may not track some of the minor crops, which could lead to un-
derestimating the total annual harvest areas when aggregating them to
calculate CIa. Instead, we used the satellite observation data to map the
intensive use of cropland, which is widely recognized to be more ob-
jective than the statistics (Donaldson and Storeygard, 2016). The
second reason is that our estimate based on GIMMS NDVI3g ignored the
presence of fallowed cropland (which could be real in some regions in
America and Africa although its areas are small). Each pixel of cropland
was assigned to either a single cropping or double cropping category.
This could cause an overestimation of annual harvest areas, thus re-
sulting in a higher CIa.

We further compared our CIG in 2010 with the average cropland
harvest frequency gap for 2011 calculated by Ray and Foley (2013)
(Table 3, Fig. S5). Our estimate of CIG tends to be smaller than that of
Ray and Foley, in particular, under the temperature/precipitation-lim-
ited scenario. On the one hand, Ray and Foley did not consider pre-
cipitation as a limiting factor in mapping CIp, which may cause a re-
latively high estimation of CIp, as well as a higher CIG than our study in
such regions as in Africa and mid-east Asia. Moreover, Ray and Foley
estimated global HFp using a simple rule, that is, if a cropland grid cell
has a mean monthly minimum temperature ≥10 °C, the number of
possible harvests in that grid cell was set at two. Instead, we used the
GDD as a heat indicator, which is more restrictive than that used by Ray
and Foley. They may thus have estimated a higher CIp than our study in
some regions such as the northern high-altitude regions. On the other
hand, the CIa estimated by Ray and Foley is much lower than those

Fig. 6. Actual harvest frequency for current global croplands at grid level.

Fig. 7. Actual cropping intensity for individual countries.
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values reported in our study and by Siebert et al., largely due to errors
or reporting issues of FAO statistics. It is clear that this underestimation
provides a too optimistic map of CIG.

4.2. Implications of CIGs

To capture whether cropping intensity can potentially play an im-
portant role in increasing food production in those food-insecure
countries, we compared the CIG map with the GHI in 2013. South Asia,
Southeast Asia, and sub-Saharan Africa are the regions with high GHI

Fig. 8. Cropping intensity gap for individual countries. a) Under temperature constraint; b) under both temperature and precipitation constraints.

Fig. 9. Aggregated extra harvest areas gained by closing cropping intensity gap.
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scores, indicating country-specific shortcomings in ensuring food se-
curity. Fig. 10 shows the CIGs for high, medium, and low GHI regions
under the temperature- and temperature/precipitation-limited sce-
narios. Importantly, these regions with a high or moderate GHI tend to
have a high or moderate CIG in both scenarios. For example, more than
80% of high GHI countries have a high and moderate CIG under the
temperature-limited scenario, meaning that reducing CIG would pro-
vide another opportunity to increase food production and help people
escape extreme hunger in these countries. We also found that the CIG
declines in high GHI regions, in particular, when precipitation is con-
sidered as another limiting factor. This suggests that water resources
are determinant for intensive use of cropland and improving water
management, and irrigation infrastructure may be one of the priority
tasks in these regions to expand the harvest areas. It may be possible to
increase harvest areas and production in countries with a large CIG
through telecoupling processes (Liu et al., 2013a,b) such as transfers of
technology (e.g., seeds) and knowledge from countries with a small
CIG. Moreover, several countries with low GHI scores also have a large
CIG, meaning that there is a reserve for these countries to increase food
production further by narrowing these gaps.

5. Conclusions

It is critical for human society to increase food production to feed
the increasing global population. Recent studies show that future ur-
banization and industrialization will result in a 1.8–2.4% loss of global
croplands by 2030 and about 80% of global cropland loss will take
place in Asia and Africa (Jiang et al., 2013; D’Amour et al., 2017). This
will undoubtedly add pressure to potentially strained future food sys-
tems and threaten livelihoods in vulnerable regions. Our study de-
monstrates that agricultural intensification through increasing cropping
intensity may provide a promising opportunity to increase global food

production as it can expand extra harvest area without a need for
cropland expansion. The global average CIG is 0.48 and 0.17 for the
temperature- and temperature/precipitation-limited scenarios, respec-
tively. We estimated that global harvest areas can be increased by an-
other 7.36million km2 and 2.71million km2 under these two scenarios,
which will largely offset the negative impacts of future urbanization on
global cropland loss. Latin America has the largest potential to expand
its harvest area by closing the CIG, followed by Asia. Some countries in
Africa have a large CIG, meaning that some additional harvests can
potentially be achieved. Thus, it is necessary to consider the role of
cropping intensity when making policies related to food production,
land use management, and planning.

Although reducing CIG would increase global food production and
help people escape extreme hunger in food-insecure countries, it is not
necessarily universally appropriate. Figs. 6 and 7 show that the CIG in
some African and Asian countries is greatly reduced by precipitation,
and water resources are thus one of the key limiting factors of CIG.
Improving water management and irrigation infrastructure may benefit
the intensive use of cropland in these regions. Moreover, increasing
cropping intensity may reduce soil organic carbon, the diversity of soil
microbiota and arthropods, thereby requiring other agricultural inputs
such as irrigation and fertilizer, as well as an increase herbicide and
pesticide application (Ray and Foley, 2013). All these factors together
may lead to the long-term deterioration of soil, water resources, and the
agricultural land base itself. Further, it is also limited by other socio-
economic factors, such as investment cost and benefit, transportation
networks, and farmer access to credit. Thus, closing the CIG involves
evaluating its eco environmental effects and taking these trade-offs into
consideration. Only if it is done sustainably is this an attractive strategy
for enabling food production to meet rising food demands and increase
households’ profits or income.

There are some limitations to this study. It used a simplified

Table 3
Summary of the three comparative studies.

CIp CIa CIG

Input data Method Global
average

Input data Method Global
average

Temporal
coverage

Spatial
details

Global
average

Siebert et al. – – – MIRCA crop
areas

Ratio of harvested crop
areas to total cropland area

1.13 2000 About
10 km

–

Ray and
Foley

Temperature Threshold 1.45 FAO statistics Ratio of harvested cropland
to total cropland

0.84 2010 Country 0.61

This study Temperature,
precipitation

GAEZ 1.74, 1.42 Time-series
NDVI

Peak-counting 1.26 2011 8 km,
country

0.48, 0.17

Fig. 10. Global hunger index (GHI) and cropping intensity gap (CIG) under temperature- (T) and temperature/precipitation-limited (T+P) scenarios.
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approach and was based on some assumptions about CIGs. A number of
factors, e.g., technological advancement, social preferences, and policy
intervention, which may also have a strong influence on CIGs, were not
taken into account in this study. Further study on potential harvest
frequency should consider the effects of global climatic change and
anthropogenic adaptation such as adoption of irrigation, which may
mitigate the limiting effects of climatic background and bring more
croplands into multiple cropping (Wu et al., 2014a,b). Moreover, when
satellite images are used to map the actual harvest frequency, the
spatial resolution and method for information extraction can also cause
some bias in the outputs. The coarse GIMMS NDVI3g dataset used here
can preserve a good pixel homogeneity and spectral discrimination in
homogeneous regions with a large cropland coverage and large field
sizes. However, in the heterogeneous or transitional zones, the “mixed
pixel” problem is a considerable challenge for coarse-scale harvest
frequency mapping efforts simply because the landscape heterogeneity
is more detailed than the resolution of the satellite sensor (Wu et al.,
2008). Thus, improving the capacity for discriminating actual cropping
frequency from coarse resolution satellite data is of great importance
for global CIG analysis. Furthermore, estimation of actual harvest fre-
quency needs also to account for the pervasiveness of leaving cropland
fallow. These improvements will help to represent better the current
real situation of used croplands and their future intensive use to achieve
the Sustainable Development Goals for human welfare.
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