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Abstract

Human modification of land-cover has been a leading cause of floral and faunal species extirpation and loss of local a
biodiversity. As natural areas are impacted, habitat and populations can become fragmented and isolated. This is p
evident in the mountainous areas of southwestern China that support the remaining populations of giant pandas (Ailuropoda
melanoleuca). Giant panda populations have been restricted to remnants of habitat from extensive past land use and l
change. Households are a basic socio-economic unit that continues to impact the remaining habitat through activitie
fuelwood consumption and new household creation. Therefore, we developed a spatio-temporal model of human act
their impacts by directly integrating households into the landscape. The integrated model allows us to examine the
factors influencing the spatial distribution of household activities and household impacts on habitat. As an example ap
we modeled household activities in a giant panda reserve in China and examined the spatio-temporal dynamics of ho
the landscape, and their mutual interactions. Human impacts are projected to result in the loss of up to 16% of all existi
within the reserve over the next 30 years. In addition, we found that accessibility largely controls the spatial distrib
ousehold activities and considerable changes in management and household activities will be required to maintain the current
evel of habitat within the reserve.
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. Introduction

Appropriation of natural areas through urban

gricultural expansion has drastically altered much of

he land surface (Vitousek et al., 1997; Rutledge et
l., 2001). Modification of habitat through less in-

ense land use such as fuelwood collection has also

d.
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esulted in drastic changes in natural systems (Liu et al.,
001). These changes have enormous implication
cosystem processes, biodiversity, and species p

ence (Ceballos and Ehrlich, 2002). This is particularly
elevant for the conservation of the giant panda (Ail-
ropodamelanoleuca). Habitat destruction and poac

ng have reduced the wild population to approxima
000 pandas (Schaller et al., 1985). Many studies hav
een conducted on panda biology and behavior
challer et al., 1985). Most of the studies are empi
al or field based. There have been also a numb
odeling studies, which have simulated panda
lation dynamics (Zhou and Pan, 1997), panda rela

ionships to bamboo dynamics (Reid et al., 1989; W
t al., 1996; Carter et al., 1999), and household prefe
nces and characteristics related to panda habitat (An et
l., 2001, 2002). However, few studies have examin

he factors influencing the spatio-temporal dynam
f households, their impacts on giant panda hab
nd their mutual interactions (Liu et al., 1999). To bet-

er understand household impacts on giant panda
at, we developed a model in which the interacti
etween households, the landscape, and giant p
abitat could be studied and based on the analyse
ided practical information for conservation and m
gement planning.

Much of human land-cover change is carried ou
he household level as households are basic dec
nd consumption units (Liu et al., 2003). The rapid

ncrease in the number of households increase
emand for more resources (Liu et al., 2003). Coupling
ousehold activities with natural processes is there
ssential to accurately model human impacts on na
ystems, to increase our understanding of human
ctions with landscapes, and to provide viable opt

or mitigating future impacts. Various approaches
odeling spatially explicit human activities and th

mpacts on natural systems have been develo
ncluding statistical techniques (Mertens and Lambin
997), agent-based models (Berger, 2001; An et al., i
ress), and cellular approaches (Balzter et al., 1998).
tatistical models have provided detailed informa
f the spatial dynamics of systems, but are often
onducive to generic frameworks (Lambin, 1994).

ore complex agent-based approaches allow increas-

ngly detailed human interactions with each other and
he environment in which they live. However, building
escriptive agent-based models is often difficult given

2

t
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he complexity of the models and human–environm
ystems (Couclelis, 2001). Cellular models, discre
n time and space, allow for simplified modeli
elationships and provide a structured environme
hich various interactions and levels of detail can
tudied (Benenson, 1999).

The overall goal of the model, Household A
andscape Integration Model (HALIM) was to deve
generalized modeling approach in which spa

emporal household processes could be integ
nto realistic landscapes. For this study, we use
eneric spatially explicit cellular model to examine

nteractions of households and panda habitat thr
heir mutual relationships with the landscape. Us
generic cellular framework facilitated the use of

ailed digital data to accurately describe the lands
nd household characteristics while providing a me

o integrate inherently different natural and house
rocesses. Furthermore, this flexibility provide
ractical and accessible framework in which vary
spects and complexity of socio-economic and na
ystems and their interactions can be integrated.

As a preliminary study, we used HALIM to evalua
he spatio-temporal effects of landscape-level ho
old activities on giant panda habitat in southw
rn China by integrating households, forest cover,
ildlife habitat through their mutual relationships w

he landscape. This allowed us to examine the ind
al spatio-temporal dynamics and the various inte

ions between the landscape, household activities
ildlife habitat. Our specific aims of this study we

o examine the influence of landscape-level house
haracteristics on the quantity and spatial distribu
f panda habitat and to determine the landscape

ors influencing these household activities. Using th
esults, we examined possible consequences of
us policy scenarios, provided suggestions to miti
amage to the remaining panda habitat, and iden

mportant landscape, household, and habitat inte
ions for future modeling efforts.

. Methods
.1. Study area

Our field study was conducted in the Wolong Na-
ure Reserve in southwestern China (Fig. 1), located
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Fig. 1. Wolong Nature Reserve lies in the Qiong

etween 102◦52′ and 103◦24′E and 30◦45′ and
1◦25′N. Wolong is one of the largest reserves (c
ring approximately 2,00,000 ha) dedicated to g
anda conservation and is estimated to contain a
0% of the remaining wild panda population (Zhang
t al., 1997). Approximately 40% of the reserve is c
ently forested. Elevations range 1200–6525 m crea
everal climatic zones and consequently high bio
cal diversity. The distribution of overstory vegetat
n the reserve is related to the elevation.

Most forests in the reserve were logged (either c
ut or selectively cut) from 1916 until the reserve w

stablished in 1975, reaching peak intensity between
961 and 1975 (Schaller et al., 1985). Commercial

ogging typically resulted in relatively large clearcuts
istributed throughout the reserve. Logging has been

u
l
l
c

untains between the Tibetan plateau and Sichuan basin.

fficially banned in the reserve since 1975; howe
o varying degrees illicit logging does continue (
inderman, personal observation). Other hum
ctivities have also been a major contribution to fo

oss and, consequently, to the spatial distributio
abitat (Liu et al., 1999, 2001).

In 2001, approximately 4440 local residents
bout 1000 households resided within the rese
he majority of these residents are farmers with
rimary economic activities consisting of farm
aize and vegetables, raising livestock such as
nd yaks, and collecting wild herbs. A househ

sually relies on fuelwood for heating, cooking, and

ivestock feed preparation (An et al., 2001). Selective
ogging for household fuelwood collection typically
hanges the species composition in the overstory and
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educes canopy cover until all overstory vegetatio
emoved. Since 1974, immigration and new house
reation have largely been dictated by local policy w
mmigration restricted by marriage and new house
reation limited or inadvertently encouraged thro
arious policies. Households have traditionally
used on subsistence agriculture, but increasing a
o markets has provided some cash crop opportun

.2. Data and model parameterization

Several sources of data were used as model inp
sed to parameterize and validate the model. Sat
ata and topographic maps were resampled to a
ize corresponding to the landscape grid and us
escribe the abiotic features and the distribution
ousehold activities and vegetation throughout
eserve. Socio-economic and demographic data
ollected from local government agencies and
ousehold surveys conducted from 1998 to 2001 (An et
l., 2001) to determine fuelwood collection, househ

ocations, and household creation rates. Literatur
anda behavior and landscape analyses of habita
sed to parameterize the habitat sub-model (Schaller
t al., 1985; Ouyang et al., 1996; Liu et al., 2001).

Abiotic information was derived from topograph
aps of the reserve. A Digital Elevation Model (DE
as interpolated from digitized 100-m contours. Sl
nd aspect data were derived from the DEM. Infor

ion on the distribution of forests was obtained fr
he classification of four dates (1965, 1974, 1987,
997) when remote sensing data were obtained.
965 data are Corona stereo-pair photographs acq
s part of the Corona photo-reconnaissance sat
roject (USGS Eros Data Center, Sioux Falls, So
akota). The 1974 data are Landsat MSS images

he 1987 and 1997 data are Landsat TM images. T
ount for the spectral and spatial differences betw
he data, each image was visually interpreted into
st and non-forest areas (for classification details
iu et al., 2001).

Uncertainty in the 1965 stand volume of the vari
orest types posed the most difficult parameteriza
roblem. While basic coverage information was av

ble from satellite photographs, data on the average
olume throughout the reserve were scant. Quantitative
nformation dating back nearly 40 years is either diffi-
ult to obtain or non-existent.Schaller et al. (1985)sug-

2
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est that much of the reserve was commercially log
rom 1916 until 1975. Measurements taken in the
990s indicated much of the lower altitude forest
e well below old-growth volumes. Average volum

or broadleaf forests below 2600 m were approxima
0 m3/ha. It is likely that these forests were the firs
e harvested in the first half of the century and h
egrown to current volume levels.

Based on regrowth data for the broadleaf for
n Wolong, we estimated the average volume
965 to be approximately 45 m3/ha. Stand volum

or subalpine conifers was on average approxima
00 m3/ha. Subalpine stand volume was high eno
uch that variations in estimates would not significa
nfluence the model results. Forest regrowth was
luded in the model to allow for previously logged
ions to regenerate and the addition of biomass
egrowth in selectively logged cells. Separate regro
odels were developed for each forest type base

pecies composition, stand age, and altitudinal z
odel parameters were derived from over 30 plots

ributed throughout the reserve (Liu et al., 1999), and
pproximation of species regrowth and yield mod
as derived from the data of the Sichuan Departm
f Forestry (Yang and Li, 1992).

A household survey was conducted from 199
001 and included 220 of the households within
eserve (An et al., 2001). Households were queri
n fuelwood use, fuelwood collection, agricultural

ivity, household creation, and other associated so
conomic and demographic information. Additio
ocio-economic and demographic information
btained from local government records. Census

ormation was obtained from each township within
eserve. Local governments also maintain informa
n land allocated to each household. From the sur
nd census data, it was found that each house
aintains on average 0.7 ha of agricultural land.

luding the area of the physical house, garden area
ther buildings, the typical total area is approxima
.8 ha. Therefore, the scale of the model was chos
e 90 m× 90 m (0.81 ha). New households have b
dded to the reserve at a rather steady number eac
etween 1965 and 1997. On average, approxim

4 new households were created each year.

We measured the location of each household
hrough the use of field measurements or Ikonos
-m resolution satellite imagery. Ikonos imagery
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cquired in 2000 by SpaceImaging was georefere
ith ground control points measured using a Glo
ositioning System with sub-meter accuracy (Trim
athfinder Pro XRS receiver and Community B
tation). We then identified households in the ima
nd recorded the location. We used all households
ted on or before 1965 to create the initial distribu
f households to correspond to the initial 1965 fo
over information.

Fuelwood use was calculated based on a surv
ver 50 households and physical measurements o
ual use (An et al., 2001). The volume of wood varie
etween 8 and 30 m3 and averaged 15 m3. A base an
ual volume of wood used by each household in
odel was then 15 m3. We derived preference for fue
ood collection and household creation sites by c
aring DEM and slope coverages, and house loca
nd fuelwood sites. Distances between househol
ations to fuelwood collection sites varied from 50
o over 5 km. The average distance for 100 househ
urveyed was approximately 500 m. Households
erred to collect fuelwood in flat areas (<20◦ slope)
nd had a decreasing probability relative to elevat

Behavioral studies have described panda habit
function of forest cover, slope, and altitude (Schaller
t al., 1985; Ouyang et al., 1996; Liu et al., 200).
herefore, we determined habitat suitability usin
ultiplicative combination of the three factors (for

over, altitude, and slope) available for the 30-y
ime span (Liu et al., 2001). Because non-forest
reas are considered unsuitable habitat for the
anda, forest/non-forest classifications were m
licative factors of 1 or 0, respectively. Slope a
ltitude multiplicative factors were proportional to
bserved use by pandas.

.3. Model description

Our model (HALIM) was developed using SELE
Spatially Explicit Landscape Event Simulator) (Fall
nd Fall, 2001; Fall et al., 2001). SELES is a high

evel programming language that facilitates mode
f the temporal and spatial dynamics of gridded la
capes. SELES also allows the incorporation of

eferenced raster data, the definition of systems that
nteract on gridded landscapes, and the temporal and
patial dynamics of these systems. SELES provides the
exibility to incorporate these various systems through

c
p
(

Fig. 2. A conceptual flow schematic diagram of the model.

ub-models and individual modeling aspects of Mar
hains, cellular automata, percolation models and
rs according to the process being modeled.

HALIM includes four sub-models: fuelwood colle
ion, household creation, forest regrowth, and pa
abitat. The resulting impacts of the distribution
ousehold activities are integrated directly into g
anda habitat models and allow model prediction
e measured in terms of changes to landscape in
f panda habitat. The sub-models and their interac
re shown inFig. 2. Household activities and forest d
amics are influenced by the abiotic characteristic

he landscape. Each of the household activities i
nces the spatial distribution of forest cover. The fo
egrowth sub-model allows for forest re-establishm
nd annual growth of non-climax forests. Finally,
uitability of giant panda habitat is determined fr
orest cover along with abiotic factors (Liu et al., 2001).
The landscape was divided into a regular lattice
omposed of 90 m× 90 m grid cells. For this model, the
robability of the initiation of most sub-model events
e.g. fuelwood collection, household creation, etc.) oc-
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urring at each grid cell was determined by the p
alues (data layer values) of the cell and, depen
n the sub-model, surrounding cells. The numbe
ub-model events is determined by the sub-mode
ameters with the location of the event stochastic
etermined by a relative cell probability (e.g. a cell w
probability of 0.5 has twice the probability of the

urrence of a landscape event compared to a cell
0.25 probability, but does not have a 50% proba

ty of an event occurrence). Depending on the pro
f interest the model also allows for landscape ev

o spread to neighboring cells (e.g. if a cell does
ontain sufficient fuelwood for the annual collect
f a household’s fuelwood needs, necessary fuelw
ollection can take place in a neighboring cell).

The sub-models are described below along with
mples of the parameters and probability function

Fuelwood collection– It was assumed that hous
hold residents collect fuelwood based on availa
ity, accessibility, and previous fuelwood collect
activity. Typically, fuelwood is collected around t
household. As these areas are diminished, fora
extends to the neighboring areas characterize
easy accessibility (Liu et al., 2001). Many resident
have been forced to travel several kilometers to
lect annual stocks of fuelwood (An et al., 2001).
Accessibility is characterized in this model by
distance to collection site, slope, and elevation
is defined as a cost function relative to the dista
to roads and main paths and topographic variab
(i.e. slope and elevation difference along the p
to the cell location). The probability function wa
linearly decreasing function of increasing cost:

P(fuelwood|cost)=
(

1 −
(

Cost

Maximum cost

))

Forest cover and average yield per hectare d
mined availability. Households are also more lik
to return to the same cell location, if sufficient for
volume exists, or neighboring cells of previous fu
wood extraction. Therefore, a higher probability
collection was assigned to cells previously harve
and to neighboring cells. The overall probability
fuelwood extraction for each forested cell is the

multiplicative combination of these factors.
Household creation– The number of new house-
holds each year was predetermined based on
potential policy and socio-economic impacts. For
l Modelling 183 (2005) 47–65

example, past trends have been relatively sta
Policies, however, have been shown to af
household creation. Therefore, a range of house
creation rates about the past trend was exam
Each new household was presumed to establis
own agriculture land, clearing the forest area or
cupying previously deforested area. The locatio
each new household was dependant on suitable
culture land and proximity to transportation rou
and other households. The household sub-m
was, therefore, determined by three parame
distance–cost factor to transportation, abi
factors, and proximity to other households. T
preciseX andY coordinates of the actual residen
were not included in this model. Rather, househo
including the physical residence, agriculture la
garden area, and various other buildings, w
presumed to occupy cells of the landscape. Sui
agriculture areas are based on abiotic factors: s
aspect, and elevation. While agriculture activ
occurs on slopes up to 40◦, low-slope areas a
preferred. Preference for low-elevation areas
also considered. For example, based on survey
probabilities for household placement based so
on elevation were measured as:

P(household|e) =

{0.00 (e > 2500)}
{0.08 (2250< e ≤ 2500)}
{0.82 (1750< e ≤ 2250)}
{1.00 (e ≤ 1750)}

In areas of higher elevation (e), preference wa
given to slopes facing south to maximize sunlig
Households were also more likely to develop l
adjacent to previously established houses and w
short distances (typically less than 2 km) of ma
transportation routes.
Forest cover– Four forest categories (non-fore
evergreen broadleaf, deciduous broadleaf,
subalpine conifer) were identified throughout
reserve based on remote sensing, elevation,
species distribution (Schaller et al., 1985). Initial
stand volume was estimated for each elevation
based on approximate time and intensity of comm
cial logging activity. Each forested cell was assum

to increase in biomass and each non-forested pixel
had a probability to re-establish based on proximity
to other forest pixels and time since deforestation.
Regrowth models were derived for each of the pre-
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dominant species within each elevation zone f
published and empirical data (Yang and Li, 1992).
Regrowth is calculated based on species and ap
imations of logistic regrowth curves of total volum
An example of the calculation is given below:

V (t, Van, Vmax) = {0.0 (t < tlag)}
{V + Van(t>tlag andV<Vmax)}

where t is the time since harvest,tlag is a nor-
mally distributed lag time since harvest un
re-establishment,Van is the annual volume incr
ment, andVmax is the maximum volume accordin
to species type. Upper asymptotic limits on volu
were controlled by stand maximum values ra
than time due to concurrent fuelwood collection
Habitat suitability– The final habitat classificatio
was a categorized suitability measure of f
classes termed highly suitable, suitable, margin
suitable, and unsuitable (Liu et al., 2001). The
impacts from household activities are reflec
in the habitat suitability model as impacts fro
fuelwood activity and agriculture developme
Measures of panda habitat quantity and suitab
allow analysis of the temporal and spatial dynam
of, the influence of household characteristics
and future giant panda habitat.

Landscape events (e.g. fuelwood collection, fo
egrowth) occurred on an annual time frame. The
andscape event in the model each year is the e
ishment of new households and associated agricu
evelopment. Each household then collects its an

uelwood volume. At the end of the year, forest
rowth occurs for each forested cell and the suitab
f panda habitat is updated.

.4. Model validation and sensitivity analyses

Model validation and sensitivity analyses w
ased on simulations started in 1965 with the in
istribution of forest based on the classification

orest/non-forest categories from the 1965 Corona
ographs. The original distribution of households
ased on all households established prior to or in 1
he sensitivity and validation simulations were run

2 years to correspond to the latest remote sensing
ata available (1997). We measured sensitivity through
arying individual parameters such as the rate of new
ousehold creation, fuelwood use, and forest charac-

a
c
h
t

l Modelling 183 (2005) 47–65 53

eristics and the relative influence of each individ
arameter on the model output. Validation was d

hrough comparison of model output over this tim
easured habitat and household distributions.
We conducted sensitivity analyses for the house

nd fuelwood collection sub-models. We examined
ensitivity of the household sub-model to each o
omponents (abiotic, proximity, and cost function)
omparing scenarios excluding components or var
arameter estimations and the measured hous
istribution in 1997. This was done because we wa

o show the overall influence each function had on
election of new households and because some
ions could not be varied systematically (e.g. abi
nfluences were based on conditional probabilities)

easured accuracy and calculated landscape m
ased on the average of 20 simulations. We also
ucted systematic analyses of sensitivity of individ
arameters for the fuelwood sub-model, such as
ropensity to return to previous fuelwood collect
ites and distance to fuelwood collection sites. S
arameterization of stand volumes for broadleaf for
elow 2600 m contained relatively large uncertai
everal average stand volumes for the broadleaf fo
ere tested, including 30, 45, 60, 75, and 90 m3/ha.
The accuracy of the predicted distribution of hou

olds was measured through comparison of pred
ocations of households in 1997 to measured locat
recise cell-by-cell prediction, however, was not

ntention of this model. Foremost, the model is stoc
ic. In addition, households do not occupy all poten
gricultural areas within the reserve. This leads to
as with similar probabilities available for househ
stablishment. However, as the spatial arrangeme
ouseholds may have an impact on habitat, particu
rucial secondary habitat, we also examined the pe
f predicted households falling in close proximity
, and 3 cells) of measured households.

Impacts from fuelwood collection were measu
y comparison of predicted and measured impac

orest cover and habitat. Again, we did not expect
ct correspondence between the model prediction

he measured distributions. Collections sites are,
egree, stochastically chosen both by the model

s with households, not all potential fuelwood sites are
hosen) and households (i.e. some degree of house-
old decisions is unpredictable regardless of informa-

ion available). In addition, the natural variability of the
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orests was not fully captured in the visual classifi
ions (i.e. the visual interpretation of forest distribut
id not include all forest gaps and edge complexit
90-m resolution) and illicit logging activities not i

luded in the model make a direct accuracy assess
ifficult.

To minimize the effect of natural and other infl
nces on the accuracy assessments, we limited an

o regions within 5 km of the current household dis
ution. This distance corresponds to the approxim
aximum distance residents travel to collect fuelwo
ithin the 5 km buffers, we used three validat
ethods: visual appraisals of multitemporal d
irect comparison to a supervised classification; a
omparison between landscape indices. We comp
redicted fuelwood impacts on forest cover to vis
lassifications of forest cover from 1974 to 19
atellite imagery (Liu et al., 2001). We compare
easurements of the distribution of households
igital classifications of forest cover as measure
997 to final outputs from the model. Digital cla
ification of the 1997 forest cover was possible w
xtensive ground sample data and provided a m
etailed snapshot of the distribution of forest co
ccuracy is reported as the percentage of pred
ells that correspond to measured cells (e.g. pred
on-forest versus measured non-forest cells).

gnores possible omission errors and was used be
f the difficulty in distinguishing natural variabili
nd human impacts (e.g. illicit logging) on forest co

rom household activities even within 5 km of t
ouseholds. Visual comparisons of model predict
nd measured forest cover change are shown
omparison between commission and omission er

In addition, comparisons were made betw
he quantity of forest area and disturbed areas
andscape metrics such as patch size, shape
omplexity. Given the difficulty in distinguishin
etween timber logging, fuelwood collection, a
atural variability in forest cover, simple accura
omparisons of the model predictions relative to
easured landscape (particularly those from the

ailed classification) do not provide a complete pict
he impacts measured from simulations were

eported as the landscape indices relative to the impact
f interest (e.g. household distribution and forest
over). Indices used include total number of patches,
ean patch size, corrected perimeter to area (p/a) ratio

f
g
t
t
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Baker and Cai, 1992) describing patch compactne
nd connectivity between patch centroids (Forman and
odron, 1986) that describes clustering of patches

.5. Household impacts

To examine the relative influences of differ
ousehold conditions on the landscape, a varie
cenarios were run from 1965 until 2030. Each
ario was started using 1965 land-cover and ho
old data. From 1965 to 1997, we based the m
arameters on measured values. We then varied m
arameters for 1997–2030 to examine the impac
ossible changes. These scenarios represent situ
here new policies were introduced after 1997. Pa
ters we examined included fuelwood consumption
ousehold and the household growth rate (or im
ration/emigration rate). The length of the simulati
as chosen based on the reliability of the model

he previous 32 years and to permit sufficient tim
ompare various scenarios and predict future imp
e compared model scenarios based on impacts

nt panda habitat as deforestation from fuelwood
ousehold construction removed habitat.

These scenarios included changes in fuelw
onsumption levels of 30, 15, 10, 5, and 03/
ear/household and household growth rates of 36
2, 0,−12, and−24 new households created or
oved each year after 1997, as well as combinatio

hese parameters. We chose these levels to reflect
le future household characteristics resulting from
olicies and management efforts such as subsidie
trictions, and/or increased accessibility to electri
or example, efforts to limit fuelwood collection a
eclaim agriculture land were initiated in 2000. S
idies have been offered in exchange for maintai
orests. The administration has also attempted to
trict the location and quantity of fuelwood collecti
lectricity prices are also currently unaffordable
ost local farmers, particularly for heating and co

ng purposes. Affordable and consistent alternative
rgy sources may influence fuelwood use in the fu
An et al., 2002). Each of these or the combinati
f these changes may provide an incentive to re
uelwood use. In addition, efforts to encourage emi-
ration out of the reserve are being instituted poten-

ially decreasing the number of households. However,
here is an increasing preference by younger adults to
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stablish new households, and in response to su
pportunities, new households have actually rece

ncreased at much higher rates than in the past. T
ore, to reflect the possible range of values, we ch
uelwood consumption levels ranging from the curr
aximum known household consumption (double

urrent average) to no fuelwood use. We also ex
ned household creation rates varying from a 50%
rease in household establishment to a net emigr
f households to reflect policy influences on house
reation over the next 30 years.

. Results

.1. Model validation and sensitivity

To examine the overall influence of the househ
ub-model parameters (e.g. topography, distanc
ransportation, and proximity to other househol
everal variations of the household sub-model w
ompared. We could not do a typical sensitivity
or this sub-model as some of the parameters w
mpirical look-up tables. Therefore, to examine

nfluence of each parameter, model outputs w
ompared for several combinations of sub-mo
arameters. For example, the household sub-m

ncluding all three hypothesized parameters (
tic, distance, and proximity) (Fig. 3a) resulted in
pproximately the same number of patches and

lar p/a ratio as the measured households. This
odel also led to a 44% larger mean patch s
nd slightly higher connectivity compared to the m
ured distribution (Table 1). Excluding abiotic pref
rences resulted in 71% more patches of house
Table 1) and caused some households to be pl
n regions of atypical topographic relief (e.g. area
xtreme slope) (Fig. 3b). Excluding the distance a
opographic variation from main transportation rou
ielded a wide distribution of households (Fig. 3c).
he number of patches was more than three time
easured distribution. Mean patch size andp/a ratio
ere both considerably lower (Table 1). And, the lack
f a proximity factor resulted in decreased clump

f households (low connectivity), smaller patch size
nd an increase in the number of patches (Table 1)
elative to the measured distribution of households
Fig. 3d).

p
u
s
p
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Accuracy in terms of predicted household locati
greeing with measured cell locations of household

ribution varied from 20 to 27% (Table 2). Incorpo-
ating all of the parameters hypothesized to influe
ousehold placement resulted in an accuracy of 27
nd 82, and 88% for predicted households withi
, 2, and 3 cells from measured households (Table 2).
his suggests that the model was predicting house
ssentially within the same areas as those mea

o also contain households. Not including the dista
unction yielded the lowest accuracy of 63% for p
icted households within 3 cells of measured ho
olds. The accuracy was 80% when a preferenc
reate new households next to existing households
ot included. Excluding the selection based on ab

actors (i.e. slope and elevation) achieved an accu
f 81% within 3 cells.

Sensitivity analyses conducted for each of the
lwood parameters showed influences from varia

n the distance and proximity factors (Table 3). Relax-
ng the tendency for households to collect fuelw
rom previously cleared areas led to more fragme
ion and is reflected in the landscape metrics. Varia
f the proximity factor three times more likely to

urn to previous sites resulted in 35% fewer patc
nd 54% larger patch sizes. Reducing the proxi

actor three times resulted and 52% more patches
4% smaller patch size (Table 3). In addition, perimete
nd connectivity indices show increasing clusterin

he proximity factor is increased. Varying the dista
ost factor by 20% resulted in similar results. Eas
he influence of the distance factor generated more
ersed impacts occurring in smaller patches. Th
een in the patch characteristics with more and sm
atches and decreasedp/a ratios and diminished co
ectivity (Table 3). Increased probability of using ne
reas conversely increased patch size, decreased
umber, and increased connectivity between pat
atch size varied by 17.9–33.7% and patch numbe

ed by 24.1 and 20.5% for a 20% decrease and inc
n the cost factor, respectively (Table 3).

Trends in deforestation relative to initial sta
olume were decreasing area of impact and red
ragmentation since more volume was available

referred collection areas (Table 3). While the outputs
sing each of the five initial volumes shown inFig. 5do
eemingly conform largely to expectations, increased
eripheral impacts occur at both increased initial
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Fig. 3. Comparisons of the influence of the three multiplicative factors contained within the household sub-model. Accuracy of each scenario
is shown relative to the measured households with corresponding predicted households and measured households shown in black, incorrectly
predicted households are shown in dark gray, actual households where no households were predicted are shown in white: (a) shows the predicted
household distribution in 1997 including all factors relative to the actual distribution; (b) is without abiotic preferences; (c) without cost factors;
and (d) without proximity influences.

Table 1
Landscape characteristics of the measured households in 1997 (Households 1997) compared to model scenarios

Number of patches Mean patch size (ha) p/a ratio Connectivity

Households 1997 94.00 40931 1.49 0.046
All parameters 110.35 59101 1.50 0.053
No proximity factor 261.00 24905 1.41 0.015
No abiotic factor 161.90 40229 1.46 0.034
No cost factor 280.60 23152 1.29 0.009

Values are averages of 20 simulations for each scenario.
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Table 2
Accuracy of the predicted household locations for the model scenarios relative to the household locations in 1997

Cells

0a 1b 2b 3b

No cost factor 20.6± 1.3c 47.3± 2.4 57.1± 2.6 63.0± 2.4
No proximity factor 21.2± 1.1 54.3± 1.7 70.6± 1.3 79.8± 1.4
No abiotic factor 22.4± 1.4 55.8± 2.4 71.8± 2.0 81.2± 2.3
All parameters 27.4± 0.7 67.9± 1.5 82.5± 1.9 88.3± 1.9
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a Accuracy as measured as predicted household locations o
b Predicted locations within 1, 2, and 3 cells (labeled 1, 2, an
c Uncertainties represent one standard error of the accuracie

olumes and decreased volumes. Landscape m
nd overall model accuracy also follow this tre
Table 3). The lowest number of patches occur
hen the initial forest stand volumes was 45 m3/ha.
ecreasing stand volume caused larger overall ha

oss, particularly the core area nearest to househ
owever, smaller peripheral impacts were m
ommon. As initial stand volume was increased,
verall impact was diminished, however small poc
f impact emerged where more continuous imp
reviously existed. These trends are clearly show

he decreasing patch perimeter and mean patch s
Fig. 4shows a multitemporal comparison of the p

icted 32-year simulation of household activity and
easured forest cover within 5 km of all househo

here appears to be a good correspondence between

he model outputs and measured forest distribution.
he basic trends in forest cover are comparable be-

ween measured and predicted distribution of forest

able 3
ensitivity of individual factors used within the fuelwood sub-model

actor Parameter Number of patches

roximity* 0.33 125.2
1 192.2
3 291.5

istance* 0.8 145.8
1 192.2
1.2 231.6

nitial volume (m3/ha) 30 211.4
45 192.2
60 258.7
75 265.9
90 246.3

alues in bold represent hypothesized values.
∗ The proximity and distance coefficients are unitless multiplicative

t
a
h
c

g at measured household locations (titled 0).
pectively) of measured household locations.

e 20 simulations conducted for each scenario.

over, though some differences from natural and o
ctivities are apparent. In addition, the model was
essful in capturing the basic trend in the distributio
ouseholds based only on the initial 1965 distribu
f households.

Accuracy and sensitivity analyses were done
etermine the overall validity of the model and

nfluence of individual parameters. The accurac
redicted impact sites relative to measured impact
eflects more concentrated impacts as initial volum
ncreased (Fig. 5). As fuelwood activity is focused o
ore areas near households, model accuracy incre
t an initial stand volume of 30 m3/ha, the overa
rediction accuracy is approximately 55%. As the
me increased to 90 m3/ha, model accuracy increas
Mean patch size (ha) p/a ratio Connectivity index

75.8 1.668 0.719
49.2 1.606 0.336
32.7 1.538 0.170

65.8 1.630 0.546
49.2 1.606 0.336
40.4 1.587 0.277

51.9 1.567 0.365
49.2 1.606 0.336
33.6 1.540 0.212
30.3 1.502 0.161
30.5 1.502 0.167

factors.

o 64% (Table 3). The increase in accuracy is largely
result of smaller areas being affected only near

ouseholds and decreased influence of stochasticity in
hoosing distant fuelwood sites.
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Fig. 4. Comparisons between visual classifications of satellite data from 1965, 1974, 1987, and 1997 and predicted forest cover due to household
activities of corresponding years.
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Fig. 5. Differences between predicted forest cover due to fuelwood collection compared to the digital classification at various starting volumes
for low-elevation forests. Forest/forest and non-forest/non-forest categories represent agreement between predicted and measured forested and
non-forested cells, respectively. The non-forest/forest category represents areas where the model predicted non-forest and the digital classification
was forest. Forest/non-forest is the opposite case: (a–e) with starting volumes of 30, 45, 60, 75, and 90 m3/ha, respectively.
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Table 4
The influence of household characteristics on habitat over 65 years
(1965–2030) relative to a baseline scenario of 0 new households per
year and 0 m3/year of fuelwood consumed after 1997

Household growth
rate (households
per year)

Fuelwood
consumption
(m3/year)

Change
in total
habitat
(%)

Change in habitat
< 2600 m of
elevation (%)

0 0 0.00 0.00
24 0 −0.06 −0.18
24 5 −1.34 −3.79
24 10 −2.61 −7.36
24 15 −3.32 −9.33
24 30 −6.06 −15.84

−24 15 −1.84 − 5.17
−12 15 −2.12 − 6.16

0 15 −2.77 −7.74
12 15 −3.21 −8.99
24 15 −3.32 −9.33
36 15 −4.31 −11.74
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.2. Household impacts

Projected household impacts on panda habita
hown inTable 4. Current levels of household creat
nd fuelwood consumption caused nearly an additi
0% habitat loss below 2600 m of elevation compa

o conditions in which no additional households
uelwood collection occurred after 1997. Acro
he entire reserve, an additional 3% of habitat
ost compared to no new household impacts a
997. Levels of household fuelwood consump
ere systematically varied from 0 to 30 m3/year to
xamine the influence of fuelwood consumption
abitat loss. An increase in fuelwood consump
fter 1997 to 30 m3/year would result in a nearly 70

ncrease in loss of habitat from the current leve
5 m3/year. Over 6% of the reserve and nearly 1
f the low-elevation forest would be further impac
y doubling the consumption of fuelwood. Reduc

uelwood consumption by two-thirds reduced the
f habitat below 2600 m of elevation by 59% compa

o baseline scenarios. Forest re-establishment
nly play a limited role over the next 30 years

e-establishment times are typically 30–50 years. In
he next 30 years, habitat loss may largely be dictated
y fuelwood consumption and increases in volume
f current stocks. Therefore, a near cessation in

m
o
f
p
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uelwood collection over the next 30 years is requ
o maintain levels of habitat as measured in 1997.

New housing development did not have the s
nfluence on the total habitat co-opted by househ
s fuelwood consumption levels did. A 50% incre

n the number of new household starts resulted
6% increase in low-elevation habitat loss relativ
aseline scenarios. Cessation of new housing dev
ent following 1997 still led to the loss of nearly 3
f the entire reserve and 8% of low-elevation hab
ompared to scenarios with no new households
o fuelwood consumption following 1997. And a
emoval of 24 households per year (the same nu
reviously being added per year) only resulted in a
eduction in habitat loss compared to baseline sce
os. As seen from a 50% increase in household cre
ith no fuelwood collection, increased population

esulting household creation contributed little to ha
at loss because considerable areas around hous
re already cleared of forest cover. Modest reduc

n both future new housing development and fuelw
onsumption (12 households per year and 10 m3/year)
ed to approximately 30% less habitat loss relativ
urrent levels of new housing and fuelwood consu
ion.

. Conclusions and discussion

HALIM was developed to examine the relations
f households to the landscape, to assess the influ
f the landscape on household activities, and
rovide a practical framework in which the inter

ions between households and the landscape ca
imultaneously studied. The study does point out a
here further analyses are needed. For example,
etailed information on the biophysical characteris
uch as total available biomass, growth rates,
fficiency in the conversion of biomass to fuelwo
ight contribute to the model. Except for the Cor
hotographs used for this study, very little informat
n the state of the forest in 1965 was available. H
ver, comparing projections of household creation
uelwood collection from 1965 to a time when ther

ore detailed information permitted a better estimate
f forest conditions in 1965 and provided insight into

actors contributing to habitat loss. Comparisons of
redicted forest loss from 1965 to 1997 to measured
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orest conditions in 1997 for several scenarios of
verage starting volume of low-elevation forest furt
uggests that these forests were already at rela
ow volumes. The lower forest volume potentia

agnified household impacts on the forests s
965. It is possible that large-scale logging occu
oncurrently with household fuelwood collecti
rom 1965 until 1975 or later. While timber activiti
ontinued after 1975, researchers did not note
arge-scale commercial logging in the reserve f
983 to the 1990s. Forest loss after 1975 until 1
as likely due to a combination of fuelwood collect
nd fine-scale timber activities, and exacerbate
lready low-stand volumes from previous large-s
ctivity. As these forests are increasingly lost, fu
ood activities are moving to higher elevation fore
ith increasing losses of core habitat.
In addition, most decisions such as consump

evel, propensity to use alternative energy sources
gration rates, and new household formations are m
t the household-level and are not explicitly mode

n this study. Increasingly complex models can
eveloped within the framework and the influence
ousehold-level socio-economic information is be
xamined. In addition, other economic and behav
rivers can be incorporated. However, using landsc

evel household factors linked to the landscape alr
rovided considerable insight into human impacts
otential mitigation strategies. The model provided
ight into the historical trends and ecological conditi
f the reserve, the driving factors of land-cover cha

he potential consequences of household alteratio
and-cover on panda habitat, the spatial arrange
f these impacts, and the intricate relations
etween households and landscapes. The trend to

ncorporating household-level data into models m
rovide more detailed information of these syste
ut the necessity of such data to practically mo
ousehold impacts at the landscape level shoul
onsidered.

Using landscape-level data, the model was ab
redict household activities relatively accurately
arsimoniously. The placement of new househ

s explained by only four factors: distance to roa

roximity to other households; slope; and elevation.
sing only these four factors; however, the model
ccurately predicts household creation nearly 90% of

he time within 3 cells of the measured distribution of

a

t
l
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ouseholds. Fuelwood collection also is only base
few landscape variables: distance to roads, pre

uelwood collection locations, slope, and elevat
gain, the model captures the trend in house

eductions in forest cover. The simplicity (e.g. fo
ousehold creation factors) and success of the m
uggest a core set of landscape-level character
as a considerable influence on the spatial distribu
f household activities.

HALIM also provided a means to examine the r
f household characteristics on possible future imp

o giant panda habitat. Households were present i
eserve prior to the establishment of the current m
ransportation routes. New roads and the introduc
f mechanized transportation have likely led to gro

n agricultural activity along these routes and increa
ccess to forests near roads away from househol
ddition, as the reserve is situated in a mountai
rea, topography plays a significant role in shaping
patial distribution of household activities. Farm
equires relatively flat land and easy access to tr
ortation. In comparison, fuelwood collection is l
ependent on the quality of collection sites than
ost factor of the distance to roads, the slope, elev
hange, and overall accessibility of the location
ollection sites.

Also, considerable changes in fuelwood consu
ion and/or household creation rates are require
aintain the current area of forest. While an increa
ousing development itself led to only small decre

n forest area, even limited fuelwood consumption
ulted in relatively large habitat losses. As most
ouseholds are being constructed on previously cle

and, the placement of new households is not lik
o directly cause further loss of forest. However, e
mall amounts of fuelwood required for the large n
er of households already in the reserve has a gr

mpact on forest cover. These results are similar to
imates as measured byLiu et al. (1999)who showed
hat relatively high rates of emigration were neces
o restore habitat and suggested that most efforts s
ocus on reducing fuelwood collection and provid
lternative energy sources for the current househ
hile providing viable means and incentives to enc

ge emigration.

HALIM provides a basic framework that has prac-
ical application for human-dominated or -influenced
andscapes. The model incorporates households
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irectly into landscapes alongside naturally oc
ing dynamics and examines the influences of
andscapes on household activities. In addition,

ethod used is flexible enough to allow the integra
f additional human and landscape compon
uch as the more detailed socio-economic infor
ion discussed above and other natural proce
uch as household impacts on understory bam
ynamics. This approach provides a useful me

o better understand and predict impacts of ho
olds on wildlife habitat and interactions with t

andscape.
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ppendix A
ub-model probability functions and description of para

ub-model Parameter

ousehold (h):
P(h|ab,t, p)

Local abiotic factors (ab):P(
P(s)P(e)P(a)
Transportation
(t): P(h|t) =
clamp(1−
cost/max)

Proximity to
existing
households (p):
P(h|p) = P(d)

uelwood (f):
P(f|a, d, p)

Availability (a):
P(f|a) = P(v)
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Factors

h|ab) = (SeeAppendix B)

Cost = distance× impedance

Distance = horizontal + vertical
distance

Impedance =f(slope)

Max = 2000 m (maximum house-
hold distance)

Distance factor (d):

{1.0 (d < 90 m)}

{0.1 (d < 200 m)}

{0.01 (d > 2000 m)}

Volume (v):

{1 (v > 0 m3)}

{0 (v = 3 m3)}
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Appendix A (Continued)

Sub-model Parameter Factors

Cost function
from household
to collection site:
P(f|d) = clamp(1
− cost/max)

Cost = distance× impedance

Distance = horizontal + vertical distance

Impedance =f(slope, road)

Max = 9000 m (maximum fuelwood collection distance)

Proximity to
previous
collection site (d)

Distance factor (d):

{1.0 (d≤ 90 m)}

{0.1 (d > 90 m)}

Forest cover:P(c|g, r) Growth (g):
P(g|v) = P(v)

Volume (v):

{1 (v < maximum, m3)}

{0 (v = maximum, m3)}

Re-establishment
(r): P(r|a) = P(cut
age)P(e)P(p)

Cut age: normal temporal Pdf(cut age, 10.0, 2.0)

Elevation (e):

{1 (e≤ max species elevation)};

{0 (e> max species elevation)}

Proximity (p):

{1 (p < 1/2 max species re-establishment distance)};

{0.5 (p < 1 max species re-establishment distance)};

{0.1 (p > 1 max species re-establishment distance)}

Habitat Suitability Slope, elevation, aspect, and forest cover

Appendix B

Empirically derived probabilities of household location from abiotic factors

Sub-model Parameter Factors

Local abiotic factors,P(h|ab) =P(s)P(e)P(a) Slope (s): P(ab|s) = P(s) {0.0 (s> 50◦)}

{0.09 (s> 40◦)}

{0.23 (s> 30◦)}

{0.63 (s> 20◦)}

{0.86 (s> 10◦)}

{1.0 (s≤ 10◦)}
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Appendix B (Continued)

Sub-model Parameter Factors

Aspect (a), P(ab|a) = P(a) {0.14 (a > 315◦)}

{0.24 (a > 270◦)}

{0.26 (a > 225◦)}

{0.35 (a > 180◦)}

{1.0 (a > 135◦)}

{0.56 (a > 90◦)}

{0.30 (a > 45◦)}

{0.14 (a≤ 45◦)}

Elevation (e), P(ab|e) = P(e) {0.00 (e> 2500)}

{0.08 (2250 <e≤ 2500)}
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ppendix C. Supplementary data

Supplementary data associated with this article
e found, in the online version, atdoi:10.1016/j
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