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Abstract

Human modification of land-cover has been a leading cause of floral and faunal species extirpation and loss of local and global
biodiversity. As natural areas are impacted, habitat and populations can become fragmented and isolated. This is particularly
evident in the mountainous areas of southwestern China that support the remaining populations of gianfAlarajasié
melanoleuca Giant panda populations have been restricted to remnants of habitat from extensive past land use and land-cover
change. Households are a basic socio-economic unit that continues to impact the remaining habitat through activities such as
fuelwood consumption and new household creation. Therefore, we developed a spatio-temporal model of human activities and
their impacts by directly integrating households into the landscape. The integrated model allows us to examine the landscape
factors influencing the spatial distribution of household activities and household impacts on habitat. As an example application,
we modeled household activities in a giant panda reserve in China and examined the spatio-temporal dynamics of households,
the landscape, and their mutual interactions. Human impacts are projected to result in the loss of up to 16% of all existing habitat
within the reserve over the next 30 years. In addition, we found that accessibility largely controls the spatial distribution of
household activities and considerable changes in management and household activities will be required to maintain the current
level of habitat within the reserve.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Appropriation of natural areas through urban and

_ agricultural expansion has drastically altered much of
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resulted indrastic changes in natural systdmsét al., the complexity of the models and human—environment
2001). These changes have enormous implications for systems Couclelis, 2001 Cellular models, discreet
ecosystem processes, biodiversity, and species persisin time and space, allow for simplified modeling
tence Ceballos and Ehrlich, 2002This is particularly relationships and provide a structured environment in
relevant for the conservation of the giant panéd-( which various interactions and levels of detail can be
uropoda melanoleugaHabitat destruction and poach- studied Benenson, 1999
ing have reduced the wild population to approximately =~ The overall goal of the model, Household And
1000 pandasIchaller et al., 1985Many studies have  Landscape Integration Model (HALIM) was to develop
been conducted on panda biology and behavior (e.g.a generalized modeling approach in which spatio-
Schaller et al., 1985 Most of the studies are empiri- temporal household processes could be integrated
cal or field based. There have been also a number ofinto realistic landscapes. For this study, we used a
modeling studies, which have simulated panda pop- generic spatially explicit cellular model to examine the
ulation dynamics Zhou and Pan, 1997panda rela- interactions of households and panda habitat through
tionships to bamboo dynamicRéid et al., 1989; Wu  their mutual relationships with the landscape. Using
etal., 1996; Carter et al., 199%nd household prefer-  a generic cellular framework facilitated the use of de-
ences and characteristics related to panda haBineei( tailed digital data to accurately describe the landscape
al., 2001, 2002 However, few studies have examined and household characteristics while providing a means
the factors influencing the spatio-temporal dynamics to integrate inherently different natural and household
of households, their impacts on giant panda habitat, processes. Furthermore, this flexibility provides a
and their mutual interactions&i{ et al., 1999. To bet- practical and accessible framework in which varying
ter understand household impacts on giant panda habi-aspects and complexity of socio-economic and natural
tat, we developed a model in which the interactions systems and their interactions can be integrated.
between households, the landscape, and giant panda As a preliminary study, we used HALIM to evaluate
habitat could be studied and based on the analyses prothe spatio-temporal effects of landscape-level house-
vided practical information for conservation and man- hold activities on giant panda habitat in southwest-
agement planning. ern China by integrating households, forest cover, and
Much of human land-cover change is carried out at wildlife habitat through their mutual relationships with
the household level as households are basic decisionthe landscape. This allowed us to examine the individ-
and consumption units.{u et al., 2003. The rapid ual spatio-temporal dynamics and the various interac-
increase in the number of households increases thetions between the landscape, household activities, and
demand for more resourcdd|f etal., 2003. Coupling wildlife habitat. Our specific aims of this study were
household activities with natural processes is therefore to examine the influence of landscape-level household
essential to accurately model human impacts on natural characteristics on the quantity and spatial distribution
systems, to increase our understanding of human inter-of panda habitat and to determine the landscape fac-
actions with landscapes, and to provide viable options tors influencing these household activities. Using these
for mitigating future impacts. Various approaches to results, we examined possible consequences of vari-
modeling spatially explicit human activities and their ous policy scenarios, provided suggestions to mitigate
impacts on natural systems have been developed,damage to the remaining panda habitat, and identified
including statistical techniquedlertens and Lambin,  important landscape, household, and habitat interac-
1997, agent-based modelBérger, 2001; An etal.,in  tions for future modeling efforts.
pres$, and cellular approacheBdlzter et al., 1998
Statistical models have provided detailed information
of the spatial dynamics of systems, but are often not 2. Methods
conducive to generic frameworkd.gmbin, 1993.
More complex agent-based approaches allow increas-2.1. Study area
ingly detailed human interactions with each other and
the environment in which they live. However, building Our field study was conducted in the Wolong Na-
descriptive agent-based models is often difficult given ture Reserve in southwestern Chirkdg( 1), located
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Fig. 1. Wolong Nature Reserve lies in the Qionglai Mountains between the Tibetan plateau and Sichuan basin.

between 1052 and 10324E and 3045 and officially banned in the reserve since 1975; however,
31°25N. Wolong is one of the largest reserves (cov- to varying degrees illicit logging does continue (M.
ering approximately 2,00,000 ha) dedicated to giant Linderman, personal observation). Other human
panda conservation and is estimated to contain aboutactivities have also been a major contribution to forest
10% of the remaining wild panda populaticfih@ng loss and, consequently, to the spatial distribution of
etal., 1997. Approximately 40% of the reserve is cur- habitat Ciu et al., 1999, 2001l
rently forested. Elevations range 1200-6525 mcreating  In 2001, approximately 4440 local residents in
several climatic zones and consequently high biolog- about 1000 households resided within the reserve.
ical diversity. The distribution of overstory vegetation The majority of these residents are farmers with the
in the reserve is related to the elevation. primary economic activities consisting of farming
Most forests in the reserve were logged (either clear maize and vegetables, raising livestock such as pigs
cut or selectively cut) from 1916 until the reserve was and yaks, and collecting wild herbs. A household
established in 1975, reaching peak intensity between usually relies on fuelwood for heating, cooking, and
1961 and 1975%challer et al., 1985 Commercial livestock feed preparatiorq et al., 200). Selective
logging typically resulted in relatively large clearcuts logging for household fuelwood collection typically
distributed throughout the reserve. Logging has been changes the species composition in the overstory and
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reduces canopy cover until all overstory vegetation is gestthat much of the reserve was commercially logged
removed. Since 1974, immigration and new household from 1916 until 1975. Measurements taken in the late
creation have largely been dictated by local policy with  1990s indicated much of the lower altitude forests to
immigration restricted by marriage and new household be well below old-growth volumes. Average volumes
creation limited or inadvertently encouraged through for broadleafforests below 2600 m were approximately
various policies. Households have traditionally fo- 80 nP/ha. Itis likely that these forests were the first to
cused on subsistence agriculture, but increasing acces$e harvested in the first half of the century and have
to markets has provided some cash crop opportunities.regrown to current volume levels.
Based on regrowth data for the broadleaf forests
2.2. Data and model parameterization in Wolong, we estimated the average volume for
1965 to be approximately 453ha. Stand volume

Several sources of data were used as model input orfor subalpine conifers was on average approximately
used to parameterize and validate the model. Satellite 300 n#/ha. Subalpine stand volume was high enough
data and topographic maps were resampled to a pixelsuch that variations in estimates would not significantly
size corresponding to the landscape grid and used toinfluence the model results. Forest regrowth was in-
describe the abiotic features and the distribution of cluded in the model to allow for previously logged re-
household activities and vegetation throughout the gions to regenerate and the addition of biomass and
reserve. Socio-economic and demographic data wereregrowth in selectively logged cells. Separate regrowth
collected from local government agencies and our models were developed for each forest type based on
household surveys conducted from 1998 to 2@01 €t species composition, stand age, and altitudinal zone.
al., 2001 to determine fuelwood collection, household Model parameters were derived from over 30 plots dis-
locations, and household creation rates. Literature on tributed throughout the reservkig et al., 1999, and
panda behavior and landscape analyses of habitat wasapproximation of species regrowth and yield models
used to parameterize the habitat sub-mo&ehgller was derived from the data of the Sichuan Department
et al., 1985; Ouyang et al., 1996; Liu et al., 2Dp01 of Forestry Yang and Li, 199

Abiotic information was derived from topographic A household survey was conducted from 1998 to
maps of the reserve. A Digital Elevation Model (DEM) 2001 and included 220 of the households within the
was interpolated from digitized 100-m contours. Slope reserve An et al., 200). Households were queried
and aspect data were derived from the DEM. Informa- on fuelwood use, fuelwood collection, agricultural ac-
tion on the distribution of forests was obtained from tivity, household creation, and other associated socio-
the classification of four dates (1965, 1974, 1987, and economic and demographic information. Additional
1997) when remote sensing data were obtained. Thesocio-economic and demographic information was
1965 data are Corona stereo-pair photographs acquiredobtained from local government records. Census in-
as part of the Corona photo-reconnaissance satelliteformation was obtained from each township within the
project (USGS Eros Data Center, Sioux Falls, South reserve. Local governments also maintain information
Dakota). The 1974 data are Landsat MSS images, andon land allocated to each household. From the surveys
the 1987 and 1997 data are Landsat TM images. To ac-and census data, it was found that each household
count for the spectral and spatial differences between maintains on average 0.7 ha of agricultural land. In-
the data, each image was visually interpreted into for- cluding the area of the physical house, garden area, and
est and non-forest areas (for classification details seeother buildings, the typical total area is approximately
Liu et al., 200). 0.8 ha. Therefore, the scale of the model was chosen to

Uncertainty in the 1965 stand volume of the various be 90 mx 90 m (0.81 ha). New households have been
forest types posed the most difficult parameterization added to the reserve at arather steady number each year
problem. While basic coverage information was avail- between 1965 and 1997. On average, approximately
able from satellite photographs, data on the average 24 new households were created each year.
volume throughout the reserve were scant. Quantitative  We measured the location of each household
information dating back nearly 40 years is either diffi- through the use of field measurements or lkonos
cultto obtain or non-existerfachaller et al. (1985ug- 1-m resolution satellite imagery. lkonos imagery
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acquired in 2000 by Spacelmaging was georeferenced
with ground control points measured using a Global
Positioning System with sub-meter accuracy (Trimble
Pathfinder Pro XRS receiver and Community Base
Station). We then identified households in the images
and recorded the location. We used all households cre-
ated on or before 1965 to create the initial distribution
of households to correspond to the initial 1965 forest
cover information.

Fuelwood use was calculated based on a survey of
over 50 households and physical measurements of an-
nual use An et al., 200). The volume of wood varied
between 8 and 30%rand averaged 15A base an-
nual volume of wood used by each household in the
model was then 15 faWe derived preference for fuel-
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wood collection and household creation sites by com- cover
paring DEM and slope coverages, and house locations

and fuelwood sites. Distances between household lo-

cations to fuelwood collection sites varied from 50 m

to over 5km. The average distance for 100 households ‘
surveyed was approximately 500 m. Households pre- Ff;'ﬁg;

ferred to collect fuelwood in flat areas (<26lope)

and had a decreasing probability relative to elevation.
Behavioral studies have described panda habitat as

a function of forest cover, slope, and altitudgehaller

et al., 1985; Ouyang et al., 1996; Liu et al., 2Dp01

Therefore, we determined habitat suitability using a sub-models and individual modeling aspects of Markov

multiplicative combination of the three factors (forest chains, cellular automata, percolation models and oth-

cover, altitude, and slope) available for the 30-year ers according to the process being modeled.

time span Kiu et al., 200). Because non-forested HALIM includes four sub-models: fuelwood collec-

areas are considered unsuitable habitat for the gianttion, household creation, forest regrowth, and panda

panda, forest/non-forest classifications were multi- habitat. The resulting impacts of the distribution of

plicative factors of 1 or 0O, respectively. Slope and household activities are integrated directly into giant

altitude multiplicative factors were proportional to the panda habitat models and allow model predictions to

Habitat

Fig. 2. A conceptual flow schematic diagram of the model.

observed use by pandas. be measured in terms of changes to landscape indices
of panda habitat. The sub-models and their interactions
2.3. Model description are shown irFig. 2 Household activities and forest dy-

namics are influenced by the abiotic characteristics of

Our model (HALIM) was developed using SELES the landscape. Each of the household activities influ-
(Spatially Explicit Landscape Event SimulatoPal ences the spatial distribution of forest cover. The forest
and Fall, 2001; Fall et al., 20D1SELES is a high-  regrowth sub-model allows for forest re-establishment
level programming language that facilitates modeling and annual growth of non-climax forests. Finally, the
of the temporal and spatial dynamics of gridded land- suitability of giant panda habitat is determined from
scapes. SELES also allows the incorporation of geo- forest cover along with abiotic factorsi( etal., 200).
referenced raster data, the definition of systems that The landscape was divided into a regular lattice
interact on gridded landscapes, and the temporal andcomposed of 90 nx 90 m grid cells. For this model, the
spatial dynamics of these systems. SELES provides theprobability of the initiation of most sub-model events
flexibility to incorporate these various systems through (e.g. fuelwood collection, household creation, etc.) oc-
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curring at each grid cell was determined by the pixel
values (data layer values) of the cell and, depending
on the sub-model, surrounding cells. The number of
sub-model events is determined by the sub-model pa-
rameters with the location of the event stochastically
determined by arelative cell probability (e.g. a cellwith
a probability of 0.5 has twice the probability of the oc-
currence of a landscape event compared to a cell with
a 0.25 probability, but does not have a 50% probabil-
ity of an event occurrence). Depending on the process
of interest the model also allows for landscape events
to spread to neighboring cells (e.g. if a cell does not
contain sufficient fuelwood for the annual collection
of a household’s fuelwood needs, necessary fuelwood
collection can take place in a neighboring cell).

The sub-models are described below along with ex-
amples of the parameters and probability functions:

o Fuelwood collection- It was assumed that house-
hold residents collect fuelwood based on availabil-
ity, accessibility, and previous fuelwood collection
activity. Typically, fuelwood is collected around the
household. As these areas are diminished, foraging
extends to the neighboring areas characterized by
easy accessibilityLfu et al., 200). Many residents
have been forced to travel several kilometers to col-
lect annual stocks of fuelwoodA( et al., 200].
Accessibility is characterized in this model by the
distance to collection site, slope, and elevation and
is defined as a cost function relative to the distance
to roads and main paths and topographic variability
(i.e. slope and elevation difference along the path
to the cell location). The probability function was a
linearly decreasing function of increasing cost:

Cost
P(fuel =1~ Maimum cos
(fuelwoodcost) ( (MaximumCOSD)

Forest cover and average yield per hectare deter-e
mined availability. Households are also more likely
to return to the same cell location, if sufficient forest
volume exists, or neighboring cells of previous fuel-
wood extraction. Therefore, a higher probability of
collection was assigned to cells previously harvested
and to neighboring cells. The overall probability of
fuelwood extraction for each forested cell is then a
multiplicative combination of these factors.

e Household creationr- The number of new house-
holds each year was predetermined based on
potential policy and socio-economic impacts. For
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example, past trends have been relatively stable.
Policies, however, have been shown to affect
household creation. Therefore, a range of household
creation rates about the past trend was examined.
Each new household was presumed to establish its
own agriculture land, clearing the forest area or oc-
cupying previously deforested area. The location of
each new household was dependant on suitable agri-
culture land and proximity to transportation routes
and other households. The household sub-model
was, therefore, determined by three parameters:
distance—cost factor to transportation, abiotic
factors, and proximity to other households. The
preciseX andY coordinates of the actual residence
were not included in this model. Rather, households,
including the physical residence, agriculture land,
garden area, and various other buildings, were
presumed to occupy cells of the landscape. Suitable
agriculture areas are based on abiotic factors: slope,
aspect, and elevation. While agriculture activity
occurs on slopes up to 40low-slope areas are
preferred. Preference for low-elevation areas was
also considered. For example, based on survey data
probabilities for household placement based solely
on elevation were measured as:

{0.00 (¢ > 2500}

P(househol¢k) = {0.08(2250< e < 2500}
~ {0.82(1750< ¢ < 2250}

{1.00 (¢ < 1750}

In areas of higher elevatiore) preference was
given to slopes facing south to maximize sunlight.
Households were also more likely to develop land
adjacent to previously established houses and within
short distances (typically less than 2 km) of major
transportation routes.

Forest cover— Four forest categories (non-forest,
evergreen broadleaf, deciduous broadleaf, and
subalpine conifer) were identified throughout the
reserve based on remote sensing, elevation, and
species distributionJchaller et al., 1985 Initial
stand volume was estimated for each elevation zone
based on approximate time and intensity of commer-
cial logging activity. Each forested cell was assumed
to increase in biomass and each non-forested pixel
had a probability to re-establish based on proximity
to other forest pixels and time since deforestation.
Regrowth models were derived for each of the pre-
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dominant species within each elevation zone from teristics and the relative influence of each individual
published and empirical dat¥gng and Li, 199} parameter on the model output. Validation was done
Regrowth is calculated based on species and approx-through comparison of model output over this time to
imations of logistic regrowth curves of total volume. measured habitat and household distributions.

An example of the calculation is given below: We conducted sensitivity analyses for the household
{0.0(t < t1ag)} and fuelwood collection sub-models. We examined the

V(t, Van, Vmax) = [V + Van(t>tiagandV < Vina)} sensitivity of the household sub-model to each of its

wheret is the time since harvestyg is a nor- components (abiotic, proximity, and cost function) by

mally distributed lag time since harvest until ComparingScehari(_lseXCIUdingcomponentsorvarying
re-establishment,, is the annual volume incre- parameter estimations and the measured household

ment, andVmay is the maximum volume according distribution in 1997..This was done becayse we wanted
to species type. Upper asymptotic limits on volume to sho_w the overall influence each function had on the
were controlled by stand maximum values rather selection of new households and because some func-
than time due to concurrent fuelwood collection. tions could not be varied systematically (e.g. abiotic
« Habitat suitability— The final habitat classification influenceswere based on conditional probabilities). We
was a categorized suitability measure of four measured accuracy and calcylated_ landscape metrics
classes termed highly suitable, suitable, marginally Pased on the average of 20 simulations. We also con-
suitable, and unsuitableLi(i et al., 200). The ducted systematic analyses of sensitivity of individual
impacts from household activities are reflected Parameters for the fuelwood sub-model, such as the
in the habitat suitability model as impacts from Propensity to retum to previous fuelwood collection
fuelwood activity and agriculture development. sites and (_jlstz_ince to fuelwood collection sites. Since
Measures of panda habitat quantity and suitability parameterization ofs.tand volumesforbroadleaffo_rests
allow analysis of the temporal and spatial dynamics below 2600 m contained relatively large uncertainty,
of, the influence of household characteristics on. several average stand volumes for the broadleaf forests
and future giant panda habitat. were tested, including 30, 45, 60, 75, and S0im.
The accuracy of the predicted distribution of house-
Landscape events (e.g. fuelwood collection, forest holds was measured through comparison of predicted
regrowth) occurred on an annual time frame. The first |ocations of households in 1997 to measured locations.
landscape event in the model each year is the estab-Precise cell-by-cell prediction, however, was not the
lishment of new households and associated agricultural intention of this model. Foremost, the model is stochas-
development. Each household then collects its annualtic. In addition, households do not occupy all potential
fuelwood volume. At the end of the year, forest re- agricultural areas within the reserve. This leads to ar-
growth occurs for each forested cell and the suitability eas with similar probabilities available for household

of panda habitat is updated. establishment. However, as the spatial arrangement of
households may have animpact on habitat, particularly
2.4. Model validation and sensitivity analyses crucial secondary habitat, we also examined the percent

of predicted households falling in close proximity (1,
Model validation and sensitivity analyses were 2, and 3 cells) of measured households.

based on simulations started in 1965 with the initial Impacts from fuelwood collection were measured
distribution of forest based on the classification of by comparison of predicted and measured impacts to
forest/non-forest categories from the 1965 Corona pho- forest cover and habitat. Again, we did not expect ex-
tographs. The original distribution of households was act correspondence between the model predictions and
based on all households established prior to or in 1965. the measured distributions. Collections sites are, to a
The sensitivity and validation simulations were run for degree, stochastically chosen both by the model (i.e.
32 years to correspond to the latest remote sensingas with households, not all potential fuelwood sites are
data available (1997). We measured sensitivity through chosen) and households (i.e. some degree of house-
varying individual parameters such as the rate of new hold decisions is unpredictable regardless of informa-
household creation, fuelwood use, and forest charac- tion available). In addition, the natural variability of the
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forests was not fully captured in the visual classifica- (Baker and Cai, 1992lescribing patch compactness,
tions (i.e. the visual interpretation of forest distribution and connectivity between patch centroiisman and
did not include all forest gaps and edge complexity at Godron, 198pthat describes clustering of patches.

a 90-m resolution) and illicit logging activities not in-

cluded in the model make a direct accuracy assessmenb 5. Household impacts

difficult.

To minimize the effect of natural and other influ- To examine the relative influences of different
ences onthe accuracy assessments, we limited analyselousehold conditions on the landscape, a variety of
to regions within 5 km of the current household distri- scenarios were run from 1965 until 2030. Each sce-
bution. This distance corresponds to the approximate nario was started using 1965 land-cover and house-
maximum distance residents travel to collect fuelwood. hold data. From 1965 to 1997, we based the model
Within the 5km buffers, we used three validation parameters on measured values. We then varied model
methods: visual appraisals of multitemporal data; parameters for 1997-2030 to examine the impacts of
direct comparison to a supervised classification; and a possible changes. These scenarios represent situations
comparison between landscape indices. We comparedwhere new policies were introduced after 1997. Param-
predicted fuelwood impacts on forest cover to visual eterswe examined included fuelwood consumption per
classifications of forest cover from 1974 to 1997 household and the household growth rate (or immi-
satellite imagery l(iu et al., 200). We compared  gration/emigration rate). The length of the simulations
measurements of the distribution of households and was chosen based on the reliability of the model over
digital classifications of forest cover as measured in the previous 32 years and to permit sufficient time to
1997 to final outputs from the model. Digital clas- compare various scenarios and predict future impacts.
sification of the 1997 forest cover was possible with We compared model scenarios based on impacts to gi-
extensive ground sample data and provided a more ant panda habitat as deforestation from fuelwood and
detailed snapshot of the distribution of forest cover. household construction removed habitat.

Accuracy is reported as the percentage of predicted These scenarios included changes in fuelwood
cells that correspond to measured cells (e.g. predictedconsumption levels of 30, 15, 10, 5, and &m
non-forest versus measured non-forest cells). This year/household and household growth rates of 36, 24,
ignores possible omission errors and was used becausd 2, 0, —12, and—24 new households created or re-

of the difficulty in distinguishing natural variability = moved each year after 1997, as well as combinations of
and human impacts (e.qg. illicit logging) on forest cover these parameters. We chose these levels to reflect possi-
from household activities even within 5km of the ble future household characteristics resulting from new
households. Visual comparisons of model predictions policies and management efforts such as subsidies, re-
and measured forest cover change are shown forstrictions, and/or increased accessibility to electricity.
comparison between commission and omission errors. For example, efforts to limit fuelwood collection and

In addition, comparisons were made between reclaim agriculture land were initiated in 2000. Sub-
the quantity of forest area and disturbed areas and sidies have been offered in exchange for maintaining
landscape metrics such as patch size, shape, andorests. The administration has also attempted to re-
complexity. Given the difficulty in distinguishing strict the location and quantity of fuelwood collection.
between timber logging, fuelwood collection, and Electricity prices are also currently unaffordable for
natural variability in forest cover, simple accuracy most local farmers, particularly for heating and cook-
comparisons of the model predictions relative to the ing purposes. Affordable and consistent alternative en-
measured landscape (particularly those from the de- ergy sources may influence fuelwood use in the future
tailed classification) do not provide a complete picture. (An et al., 2002. Each of these or the combination
The impacts measured from simulations were also of these changes may provide an incentive to reduce
reported as the landscape indices relative to the impactfuelwood use. In addition, efforts to encourage emi-
of interest (e.g. household distribution and forest gration out of the reserve are being instituted poten-
cover). Indices used include total number of patches, tially decreasing the number of households. However,
mean patch size, corrected perimeter to apég (atio there is an increasing preference by younger adults to
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establish new households, and in response to subsidy Accuracy in terms of predicted household locations
opportunities, new households have actually recently agreeing with measured cell locations of household dis-
increased at much higher rates than in the past. There-tribution varied from 20 to 27%Table 2. Incorpo-
fore, to reflect the possible range of values, we chose rating all of the parameters hypothesized to influence
fuelwood consumption levels ranging from the current household placement resulted in an accuracy of 27, 68,
maximum known household consumption (double the and 82, and 88% for predicted households within 0,
current average) to no fuelwood use. We also exam- 1, 2, and 3 cells from measured householtib(e 3.
ined household creation rates varying from a 50% in- This suggests thatthe model was predicting households
crease in household establishment to a net emigrationessentially within the same areas as those measured
of households to reflect policy influences on household to also contain households. Not including the distance
creation over the next 30 years. function yielded the lowest accuracy of 63% for pre-
dicted households within 3 cells of measured house-
holds. The accuracy was 80% when a preference to

3. Results create new households next to existing households was
not included. Excluding the selection based on abiotic
3.1. Model validation and sensitivity factors (i.e. slope and elevation) achieved an accuracy

of 81% within 3 cells.

To examine the overall influence of the household Sensitivity analyses conducted for each of the fu-
sub-model parameters (e.g. topography, distance toelwood parameters showed influences from variations
transportation, and proximity to other households), in the distance and proximity factor§gble 3. Relax-
several variations of the household sub-model were ing the tendency for households to collect fuelwood
compared. We could not do a typical sensitivity test from previously cleared areas led to more fragmenta-
for this sub-model as some of the parameters were tion and is reflected in the landscape metrics. Variation
empirical look-up tables. Therefore, to examine the of the proximity factor three times more likely to re-
influence of each parameter, model outputs were turn to previous sites resulted in 35% fewer patches
compared for several combinations of sub-model and 54% larger patch sizes. Reducing the proximity
parameters. For example, the household sub-modelfactor three times resulted and 52% more patches and
including all three hypothesized parameters (abi- 34% smaller patch siz&#éble 3. In addition, perimeter
otic, distance, and proximity)Hg. 3a) resulted in and connectivity indices show increasing clustering as
approximately the same number of patches and sim- the proximity factor is increased. Varying the distance
ilar p/a ratio as the measured households. This sub- cost factor by 20% resulted in similar results. Easing
model also led to a 44% larger mean patch size, the influence of the distance factor generated more dis-
and slightly higher connectivity compared to the mea- persed impacts occurring in smaller patches. This is
sured distribution Table 7). Excluding abiotic pref- seen in the patch characteristics with more and smaller
erences resulted in 71% more patches of householdspatches and decreaspth ratios and diminished con-
(Table 7 and caused some households to be placed nectivity (Table 3. Increased probability of using near
in regions of atypical topographic relief (e.g. areas of areas conversely increased patch size, decreased patch
extreme slope)Kig. ). Excluding the distance and number, and increased connectivity between patches.
topographic variation from main transportation routes Patch size varied by 17.9-33.7% and patch number var-

yielded a wide distribution of householdBig. 3c). ied by 24.1 and 20.5% for a 20% decrease and increase
The number of patches was more than three times thein the cost factor, respectivelifgble 3.
measured distribution. Mean patch size gfa ratio Trends in deforestation relative to initial stand

were both considerably loweTdble 1. And, the lack volume were decreasing area of impact and reduced
of a proximity factor resulted in decreased clumping fragmentation since more volume was available in
of households (low connectivity), smaller patch size preferred collection area3dble 3. While the outputs
and an increase in the number of patch&sb{e J) using each of the five initial volumes showrHiy. 5do
relative to the measured distribution of households seemingly conform largely to expectations, increased
(Fig. 3d). peripheral impacts occur at both increased initial
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Fig. 3. Comparisons of the influence of the three multiplicative factors contained within the household sub-model. Accuracy of each scenario
is shown relative to the measured households with corresponding predicted households and measured households shown in black, incorrectl
predicted households are shown in dark gray, actual households where no households were predicted are shown in white: (a) shows the predicte
household distribution in 1997 including all factors relative to the actual distribution; (b) is without abiotic preferences; (c) withoutarsst fact

and (d) without proximity influences.

Table 1
Landscape characteristics of the measured households in 1997 (Households 1997) compared to model scenarios
Number of patches Mean patch size (ha) p/aratio Connectivity

Households 1997 9a0 40931 1.49 0.046

All parameters 1135 59101 1.50 0.053

No proximity factor 26100 24905 1.41 0.015

No abiotic factor 1600 40229 1.46 0.034

No cost factor 28®0 23152 1.29 0.009

Values are averages of 20 simulations for each scenario.
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Table 2
Accuracy of the predicted household locations for the model scenarios relative to the household locations in 1997

Cells

0? 1v 2 3
No cost factor 20.61.%F 47.3+24 57.1£2.6 63.0£2.4
No proximity factor 21.2+1.1 54.3+-1.7 70.6-1.3 79.8-1.4
No abiotic factor 22414 55.8+2.4 71.8+2.0 81.2+2.3
All parameters 27.40.7 67.9+-1.5 82.5+-1.9 88.3:1.9

a Accuracy as measured as predicted household locations occurring at measured household locations (titled 0).
b Predicted locations within 1, 2, and 3 cells (labeled 1, 2, and 3, respectively) of measured household locations.
¢ Uncertainties represent one standard error of the accuracies of the 20 simulations conducted for each scenario.

volumes and decreased volumes. Landscape metricscover, though some differences from natural and other
and overall model accuracy also follow this trend activities are apparent. In addition, the model was suc-
(Table 3. The lowest number of patches occurred cessfulincapturing the basic trend in the distribution of
when the initial forest stand volumes was 4%ha. households based only on the initial 1965 distribution
Decreasing stand volume caused larger overall habitatof households.
loss, particularly the core area nearest to households; Accuracy and sensitivity analyses were done to
however, smaller peripheral impacts were more determine the overall validity of the model and the
common. As initial stand volume was increased, the influence of individual parameters. The accuracy of
overall impact was diminished, however small pockets predicted impact sites relative to measured impact also
of impact emerged where more continuous impacts reflects more concentrated impacts as initial volume is
previously existed. These trends are clearly shown in increasedKig. 5). As fuelwood activity is focused on
the decreasing patch perimeter and mean patch size. core areas near households, model accuracy increases.
Fig. 4shows a multitemporal comparison of the pre- At an initial stand volume of 30 Atha, the overall
dicted 32-year simulation of household activity and the prediction accuracy is approximately 55%. As the vol-
measured forest cover within 5km of all households. ume increased to 90%tha, model accuracy increased
There appears to be a good correspondence betweerio 64% (Table 3. The increase in accuracy is largely
the model outputs and measured forest distribution. a result of smaller areas being affected only near
The basic trends in forest cover are comparable be- households and decreased influence of stochasticity in
tween measured and predicted distribution of forest choosing distant fuelwood sites.

Table 3
Sensitivity of individual factors used within the fuelwood sub-model
Factor Parameter Number of patches Mean patch size (ha) p/aratio Connectivity index
Proximity* 0.33 1252 758 1668 Q719
1 1922 492 1606 0336
3 2915 327 1538 Q170
Distancé 0.8 145.8 65.8 1.630 0.546
1 1922 492 1606 Q0336
1.2 2316 404 1587 Q277
Initial volume (m?/ha) 30 2114 51.9 1.567 0.365
45 1922 492 1606 Q336
60 2587 336 1540 Q0212
75 2659 303 1502 Q161
90 2463 305 1502 Q167

Values in bold represent hypothesized values.
* The proximity and distance coefficients are unitless multiplicative factors.



58 M.A. Linderman et al. / Ecological Modelling 183 (2005) 47-65

Measured Forest Change

Predicted Forest Change

Fig. 4. Comparisons between visual classifications of satellite data from 1965, 1974, 1987, and 1997 and predicted forest cover due to househol
activities of corresponding years.
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(d)

(b)

Modeled/Measured

I Forest/Forest

I Nonforest/Forest
B Forest/Nonforest

[ | Nonforest/Nonforest

(©)

Fig. 5. Differences between predicted forest cover due to fuelwood collection compared to the digital classification at various starting volumes
for low-elevation forests. Forest/forest and non-forest/non-forest categories represent agreement between predicted and measured forested an
non-forested cells, respectively. The non-forest/forest category represents areas where the model predicted non-forest and the dgitah classific

was forest. Forest/non-forest is the opposite case: (a—e) with starting volumes of 30, 45, 60, 75, 3fhé9@spectively.
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Table 4

The influence of household characteristics on habitat over 65 years
(1965-2030) relative to a baseline scenario of 0 new households per
year and 0 rilyear of fuelwood consumed after 1997

Household growth Fuelwood Change Change in habitat

rate (households consumption intotal <2600m of
per year) (mPlyear) habitat  elevation (%)
(%)
0 0 0.00 000
24 0 —0.06 —0.18
24 5 —-1.34 -3.79
24 10 -2.61 —7.36
24 15 -3.32 -9.33
24 30 —-6.06 —1584
—24 15 -1.84 —-517
-12 15 -212 —-6.16
0 15 —2.77 -7.74
12 15 -3.21 —8.99
24 15 -3.32 -9.33
36 15 —-431 -1174
12 10 —2.26 —6.41

3.2. Household impacts

Projected household impacts on panda habitat are
shown inTable 4 Current levels of household creation
and fuelwood consumption caused nearly an additional
10% habitat loss below 2600 m of elevation compared
to conditions in which no additional households and
fuelwood collection occurred after 1997. Across
the entire reserve, an additional 3% of habitat was
lost compared to no new household impacts after
1997. Levels of household fuelwood consumption
were systematically varied from 0 to 3Gfyear to
examine the influence of fuelwood consumption on
habitat loss. An increase in fuelwood consumption
after 1997 to 30 riyear would result in a nearly 70%
increase in loss of habitat from the current level of
15 mf/year. Over 6% of the reserve and nearly 16%
of the low-elevation forest would be further impacted
by doubling the consumption of fuelwood. Reducing
fuelwood consumption by two-thirds reduced the loss
of habitat below 2600 m of elevation by 59% compared
to baseline scenarios. Forest re-establishment will
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fuelwood collection over the next 30 years is required
to maintain levels of habitat as measured in 1997.
New housing development did not have the same
influence on the total habitat co-opted by households
as fuelwood consumption levels did. A 50% increase
in the number of new household starts resulted in a
26% increase in low-elevation habitat loss relative to
baseline scenarios. Cessation of new housing develop-
ment following 1997 still led to the loss of nearly 3%
of the entire reserve and 8% of low-elevation habitat
compared to scenarios with no new households and
no fuelwood consumption following 1997. And a net
removal of 24 households per year (the same number
previously being added per year) only resulted in a 45%
reduction in habitat loss compared to baseline scenar-
ios. As seen from a 50% increase in household creation
with no fuelwood collection, increased population and
resulting household creation contributed little to habi-
tat loss because considerable areas around households
are already cleared of forest cover. Modest reduction
in both future new housing development and fuelwood
consumption (12 households per year and $§ear)
led to approximately 30% less habitat loss relative to
current levels of new housing and fuelwood consump-
tion.

4. Conclusions and discussion

HALIM was developed to examine the relationship
of households to the landscape, to assess the influence
of the landscape on household activities, and to
provide a practical framework in which the interac-
tions between households and the landscape can be
simultaneously studied. The study does point out areas
where further analyses are needed. For example, more
detailed information on the biophysical characteristics
such as total available biomass, growth rates, and
efficiency in the conversion of biomass to fuelwood
might contribute to the model. Except for the Corona
photographs used for this study, very little information
on the state of the forest in 1965 was available. How-
ever, comparing projections of household creation and

only play a limited role over the next 30 years as fuelwood collection from 1965 to a time when there is
re-establishment times are typically 30-50 years. In more detailed information permitted a better estimate
the next 30 years, habitat loss may largely be dictated of forest conditions in 1965 and provided insight into
by fuelwood consumption and increases in volume factors contributing to habitat loss. Comparisons of
of current stocks. Therefore, a near cessation in predicted forest loss from 1965 to 1997 to measured
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forest conditions in 1997 for several scenarios of the households. Fuelwood collection also is only based on
average starting volume of low-elevation forest further a few landscape variables: distance to roads, previous
suggests that these forests were already at relativelyfuelwood collection locations, slope, and elevation.
low volumes. The lower forest volume potentially Again, the model captures the trend in household
magnified household impacts on the forests since reductions in forest cover. The simplicity (e.g. four
1965. It is possible that large-scale logging occurred household creation factors) and success of the model
concurrently with household fuelwood collection suggest a core set of landscape-level characteristics
from 1965 until 1975 or later. While timber activities has a considerable influence on the spatial distribution
continued after 1975, researchers did not note any of household activities.
large-scale commercial logging in the reserve from HALIM also provided a means to examine the role
1983 to the 1990s. Forest loss after 1975 until 1997 of household characteristics on possible future impacts
was likely due to a combination of fuelwood collection to giant panda habitat. Households were present in the
and fine-scale timber activities, and exacerbated by reserve prior to the establishment of the current major
already low-stand volumes from previous large-scale transportation routes. New roads and the introduction
activity. As these forests are increasingly lost, fuel- of mechanized transportation have likely led to growth
wood activities are moving to higher elevation forests in agricultural activity along these routes and increased
with increasing losses of core habitat. access to forests near roads away from households. In
In addition, most decisions such as consumption addition, as the reserve is situated in a mountainous
level, propensity to use alternative energy sources, em-area, topography plays a significant role in shaping the
igration rates, and new household formations are madespatial distribution of household activities. Farming
at the household-level and are not explicitly modeled requires relatively flat land and easy access to trans-
in this study. Increasingly complex models can be portation. In comparison, fuelwood collection is less
developed within the framework and the influence of dependent on the quality of collection sites than the
household-level socio-economic information is being cost factor of the distance to roads, the slope, elevation
examined. In addition, other economic and behavioral change, and overall accessibility of the location of
drivers can be incorporated. However, using landscape- collection sites.
level household factors linked to the landscape already  Also, considerable changes in fuelwood consump-
provided considerable insight into human impacts and tion and/or household creation rates are required to
potential mitigation strategies. The model provided in- maintain the current area of forest. While an increase in
sightinto the historical trends and ecological conditions housing development itself led to only small decreases
of the reserve, the driving factors of land-cover change, in forest area, even limited fuelwood consumption re-
the potential consequences of household alterations ofsulted in relatively large habitat losses. As most new
land-cover on panda habitat, the spatial arrangementhouseholds are being constructed on previously cleared
of these impacts, and the intricate relationships land, the placement of new households is not likely
between households and landscapes. The trend towardo directly cause further loss of forest. However, even
incorporating household-level data into models may small amounts of fuelwood required for the large num-
provide more detailed information of these systems, ber of households already in the reserve has a greater
but the necessity of such data to practically model impact on forest cover. These results are similar to es-
household impacts at the landscape level should betimates as measured hyu et al. (1999)who showed
considered. that relatively high rates of emigration were necessary
Using landscape-level data, the model was able to to restore habitat and suggested that most efforts should
predict household activities relatively accurately and focus on reducing fuelwood collection and providing
parsimoniously. The placement of new households alternative energy sources for the current households
is explained by only four factors: distance to roads; while providing viable means and incentives to encour-
proximity to other households; slope; and elevation. age emigration.
Using only these four factors; however, the model HALIM provides a basic framework that has prac-
accurately predicts household creation nearly 90% of tical application for human-dominated or -influenced
the time within 3 cells of the measured distribution of landscapes. The model incorporates households
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Appendix A

Sub-model probability functions and description of parameters and factors

Sub-model Parameter Factors
Household f): Local abiotic factors (ab)y(hjab) = (SeeAppendix B
P(hlab,t, p) P(s)P(e)P(a)
Transportation Cost = distancex impedance
(O): P(hit) = Distance = horizontal + vertical
clamp(1-— distance
cost/max)

Impedance #(slope)

Max = 2000m (maximum house-
hold distance)

Proximity to Distance factord):
existing 1.0 d< 90
households): {0'1 (d : 20(;n)}
P(hip) = P() {0.1 @ <200m}
{0.01 @ > 2000 m}
Fuelwood f): Availability (a): Volume ):
P(fla, d, p) P(fla) = P(v) {1w>0nd)

{0(v=3m)}
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Appendix A Continued
Sub-model Parameter Factors
Cost function Cost = distancex impedance
from household Distance = horizontal + vertical distance
to collection site:
P(f|d) = clamp(1 Impedance #(slope, road)
— cost/max) Max = 9000 m (maximum fuelwood collection distance)
Proximity to Distance factord):
previous 1.0(d<90m
collection site ) fro@= 3
{0.1 @>90m)}
Forest coverP(c|g, r) Growth @Q): \Volume ):
P(glv) = P(v) {1 (v< maximum, ni)}
{0 (v= maximum, ni)}
Cut age: normal temporal Kdut age, 10.0, 2.0)
Elevation €):
Re-establishment {1 (e < max species elevatiof)
(r): P(r|a) = P(cut = pec .
ageP(e)P(p) {0 (e> max species elevatioh)
Proximity (p):
{1 (p < 1/2 max species re-establishment distahce)
{0.5 (p < 1 max species re-establishment distajce)
{0.1 (p > 1 max species re-establishment distajce)
Habitat Suitability Slope, elevation, aspect, and forest cover
Appendix B

Empirically derived probabilities of household location from abiotic factors

Sub-model Parameter Factors

Local abiotic factorsP(hjab) =P(s)P(e)P(a) Slope 6): P(abs) = P(s) {0.0 s>50°)}
{0.09 6>40)}
{0.23 6> 30")}

{0.63 6> 20°)}
{0.86 6> 10°)}
{1.06=<10°)}
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Appendix B Continued

Sub-model Parameter Factors

Aspect @), P(aba) = P(a) {0.14 @> 315)}
{0.24 @>270")}
{0.26 @> 225")}
{0.35 @> 180)}
{1.0 @>135)}
{0.56 @>90°)}
{0.30 @> 45°)}
{0.14 @ < 45°)}

Elevation €), P(abje) = P(e) {0.00 € > 2500)}
{0.08 (2250 < < 2500)}
{0.82 (1750 < < 2250)}
{1.00 e < 1750)}
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