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EXECUTIVE SUMMARY 

As populations continue to rise and land becomes scarcer in Africa’s rural areas, there is 
increasing urgency for farmers to adopt land management practices that sustainably raise land 
and labor productivity. Considerable effort has focused on promoting inorganic fertilizers, 
but it is increasingly recognized that smallholder farmers’ demand for fertilizer can be 
depressed by soil conditions that reduce crop response to and the profitability of fertilizer use. 
This article quantifies the impacts of soil characteristics on maize response to fertilizer in 
Zambia using a nationally representative sample of 1,453 fields. In addition to economic and 
farm management surveys, composite soil samples were collected and analyzed for several 
characteristics at the Zambia Agricultural Research Institute. Soil’s role in agricultural 
production and fertilizer efficiency is more nuanced than most economic literature has 
acknowledged. We believe ours is the first model in economic literature that simultaneously 
allows for the effects of multiple soil characteristics. We estimate critical threshold effects on 
yield response to fertilizer to be between pH levels of 5.4 and 5.6, soil organic matter levels 
of 1.2-1.4%, and find significant soil texture―and cation exchange―related thresholds. 
Depending on these soil characteristics, average maize yield response estimates range from 
insignificant (0) to 5.7 maize kg per fertilizer kg. We estimate fertilizer use on maize is not 
profitable at commercial prices for the majority of Zambian farmers (under current practices). 
Even ignoring transfer costs, about 80% of fertilized maize fields still have an estimated 
average value-cost-ratio for fertilizer less than one at commercial prices. To the best of our 
knowledge, the flexibility of our model and data with this scope of geography and content are 
novel contributions to the literature.  
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1. UNDERSTANDING FERTILIZER EFFECTIVENESS AND ADOPTION               
ON MAIZE IN ZAMBIA 

“Supporting broadly based income growth … will require in the first instance an increase in 
the productivity of small farmers. So long as agricultural labor earns only $1 a day, the vast 
majority of rural citizens who work as farmers will remain poor…” 

-Robert Paarlberg, 2013, in the second edition of “Food Politics” 

“There isn’t the land out there. Despite what everybody says, you don't see expansion of land 
… we’ve got to produce more on the existing land … but we’ve got to do it in such a way 
that we are prudent in our use of … pesticides, herbicides and fertilizer.” 

-Sir Gordon Conway, author of “One Billion Hungry” speaking at Stanford in 2015 

As it now stands, Africans would benefit greatly if farmers (and particularly small-scale 
farmers) were more productive agriculturally per unit of land. Regardless of how we define 
poor, hungry or malnourished, a vast number of the world’s worst off live in Africa 
(Paarlberg 2013). The majority of that group are agrarian, but net buyers of even staple grains 
(Barrett 2011; Jayne et al. 2003), so it is the poorest who stand to gain the most from 
increased land productivity.  

While the importance of increased production per unit of available cropland is more urgent 
than ever now, the need is constantly growing (Conway and Wilson 2012). Both rural and 
urban population densities are rising rapidly (Masters et al. 2013). Paradoxically, population 
growth both demands and threatens agricultural productivity growth. On one hand, higher 
rural population on finite land resources combines with rising urban demand for grain 
intensive (meaty) diets to put upward pressure on land productivity. On the other hand, if 
agricultural intensification is not done sustainably in the short-run, soils will be depleted of 
nutrients and soil properties will change so that production per unit of land and other inputs 
will decrease in the medium-to-long-run.  

Fertilizer use will be crucial for raising farm productivity in Africa (Jayne and Rashid 2013). 
When virgin land is converted to agriculture the natural nutrient cycle, which keeps soils 
fertile and plants growing, is broken.; sustainable production requires that removed nutrients 
be returned to the soil (Jones et al. 2013; Vitousek et al. 2009).  

That said, soil characteristics affect crop response to fertilizer and hence the profitability of 
and demand for fertilizer. (Burke, Jayne, and Black forthcoming; Marenya and Barrett 2009a; 
Matsumoto and Yamano 2009). Specifically, the physical, biological and chemical 
characteristics of soils strongly influence the amounts of nutrients that can be stored and 
released, water storage, and the ability of plants to take-up nutrients (Jones et al. 2013).  

The importance of the relationship between soil characteristics and fertilizer effectiveness has 
received too little attention in the agricultural economic literature, particularly as related to 
fertilizer promotion policies. Hence, the objective of this article is to quantify the impacts of 
soil characteristics on yields and yield response to fertilizer by looking at the case of maize in 
Zambia (maize is by far the most commonly grown and consumed staple food in the country).  

In 2012, a sample of the largest maize fields cultivated by 1,653 rural households was 
designed using a nationally representative framework. In addition to an economic survey, 
farmers were asked details of their farm management practices and field sizes were measured 
using global positioning system (GPS) trackers. Finally, from each field a composite sample 
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of the first 20 cm of the soil profile were collected and analyzed for several soil 
characteristics by the Zambia Agricultural Research Institute (ZARI). To the best of our 
knowledge, no data with this combined scope of geography and content has ever been 
available.  

This article makes important contributions to the small agricultural economics literature that 
quantifies yield response to fertilizer applications in Africa. The most thorough similar study 
to date is arguably Marenya and Barrett (2009b), who focus on the effects of soil organic 
matter in western Kenya. By contrast, our article examines a broader range of important soil 
characteristics, so our insights into the relationship between soil and productivity and 
possible interventions is more complete. Our analysis is also more geographically expansive, 
based on a nationally representative sample of farm households in Zambia. We integrate 
agronomic principles into econometric models of crop response to fertilizer and discuss the 
kinds of soil data that may be more (or less) useful in combination with household survey 
data.  

Also, our respondents were chosen at random, meaning we estimate realized response rates, 
rather than the potential responses found using field trials or lead farmers that are often 
referenced in policy analyses. Such trials may overestimate response rates for many reasons 
(Snapp et al. 2014), while we believe our approach more accurately describes crop response 
rates to fertilizer application that smallholder farmers actually obtain. Finally, we look 
beyond the past and present to consider the importance of our findings in the context of 
larger, denser populations moving forward. We do this by statistically investigating the 
relationship between population density and the intensity of land use across Zambian districts 
and then the evidence in our data as to whether intensification affects soil characteristics. 
This article thus provides useful insights for policy makers in the design of comprehensive 
strategies for increasing productivity and intensification while maintaining soil fertility. 
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2. SOIL DATA AND THE CHARACTERISTICS DETERMINING PLANT GROWTH 

This section discusses the nutrients plants need to grow, selected soil properties that 
determine nutrient storage and release and other determinants of plant growth and response to 
fertilizers. Broadly speaking, the measurable soil-based determinants of plant growth, or soil 
data, can be categorized as either available nutrients or general characteristics.  

2.1. Nutrients 

Plant growth requires 17 nutrients. Fourteen of these are taken up in an ionic form from the 
soil solution. These can be sub-categorized as either micronutrients or macronutrients 
depending on the nutrient concentration in the plant.1 The macronutrients hydrogen, carbon, 
and oxygen come from the air and water and makeup the bulk of plant biomass. Nitrogen (N), 
phosphorus (P) and potassium (K) are taken up in the largest quantity from the soil and are 
most likely deficiencies on low productivity soils. These elements are also the primary 
ingredients in most fertilizers used throughout the world.2 Besides the presence of nutrients, 
their relative importance to each plant also determines yield. Plants need nutrients in certain 
proportions; if one is taken up in excess or in too small amount yield will be limited by the 
nutrient imbalance.  

This rule for plant growth, named the law of the minimum, was first posited by Carl Sprengel 
(1837), and later inaccurately credited to Justus von Liebig (1840). A popular analogy is 
Liebig’s Barrel, where the amount of water held by a wooden barrel represents realized yield. 
Each plank of the barrel represents a required nutrient, and the length of the plank the 
availability of the same. Obviously, whichever plank is shortest determines the amount of 
water the barrel can hold. Economists might refer to this as the plant’s Leontief production 
function. 

The levels of available nutrients are the direct determinants of plant growth, and though 
technically measureable, specific nutrient data are not ideal when carrying out large-scale 
survey analysis. Firstly, the timing of soil collection (and nutrient availability) relative to a 
plant’s growth stage is very important, particularly for nitrogen. N is a very mobile element 
and does not stay in the soil solution long before either being taken up by a plant, washing 
away, escaping as a gas or leaching deep into the soil (Jones et al. 2013; Vitousek et al. 
2009). Since the relevant timing is going to be specific to the plant, it is effectively 
impossible for any broadly representative household survey to measure relevant nitrogen 
consistently across observations. 

Rather than measuring available nutrients directly, a more common and reliable practice is to 
measure the general soil characteristics that partially determine, and are highly correlated 
with availability of nutrients.  

2.2. Soil Characteristics and Nutrient Availability 

General characteristics can be sub-categorized as indicators of soil chemistry, soil physics, or 
soil biology. There are numerous ways to measure each, but this section focuses on the 

                                                 
1 The macronutrients not discussed in the text are calcium, magnesium and sulfur; the micronutrients are boron, 
chlorine, copper, iron, manganese, molybdenum, nickel and zinc.  
2 Fertilizer means water-soluble inorganic fertilizers. We use element and nutrient interchangeably. 
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characteristics used for this article and how they relate to productivity and expected yield 
response to fertilizers. 

Soil chemistry can be quantified using cation exchange capacity (CEC), measured in 
milliequivalents (meq) per 100 grams of soil. Whether they come from inorganic fertilizer 
application or any other source, plants do not usually take up nutrients immediately after they 
are applied to soil. Rather, they must be held in the soil solution by bonding with other 
elements. Eventually enzymes released either from microbial activity or plant roots break 
these bonds and release nutrients to become available for plants. The CEC is the number of 
negative charges displayed by a soil and is a measure of soil’s ability to hold cations 
(positively charged nutrient particles). Soils with higher CEC have a greater capacity to store 
cations, and are therefore likely to be more fertile (Jones et al. 2013). The CEC is also 
correlated with soil organic matter and clay content. 

A second measure of soil chemistry is pH (potential hydrogen), which measures soil acidity. 
pH values range from 0 to 14, with 7 being neutral and lower (higher) values being more 
acidic (alkaline). At low pH, hydrogen protons (H+) and ionic aluminum forms (Al3+) saturate 
the cation exchange capacity hindering the retention of K, Ca, Mg, and other essential 
elements. Also at low pH values, specific nutrients like P can be strongly sorbed on positively 
charged soil particles limiting the availability of P derived from both the soil and fertilizers. 
Soil microbial activities and root growth are also negatively influenced at low pH values, 
particularly at high levels of Al3+. On the contrary, soils with high pH values can store K, Ca, 
and Mg that can then be released to the solution and taken up by the roots. Also phosphate 
species formed under neutral conditions remain much more available than those formed 
under highly acidic conditions (Jones et al. 2013).  

A common soil biology measure is soil organic matter (SOM).3 Marenya and Barrett (2009a; 
2009b) and subsequent agricultural economics literature refer to SOM as the best measure of 
soil quality, and indeed SOM is an indicator for several important factors. First, higher SOM 
suggests higher levels of nutrient stocks (especially nitrogen, phosphorus, and sulfur), a high 
CEC (see above), and a high capacity to hold water. Higher SOM also suggests soils that are 
higher in microbial activity, and thus higher levels of the enzymes needed to free up nutrients 
stored in organic forms so that they may be taken up by plants. High SOM also suggests soil 
structures that ensure good growth conditions for roots. In short, for many reasons higher 
SOM is expected to be associated with higher yields and yield response to fertilizer (as found 
in Kenya by Marenya and Barrett (2009b) and Uganda and Kenya by Matsumoto and 
Yamano (2009)). 

We measure soil physics using texture classification, or the tangible makeup of the soil. All 
soil is made up of particulates and every particulate is classified as either clay, silt or sand 
according to its size. The smallest, clay, are less than 0.002 millimeters (mm), followed by 
silt (0.002-0.05 mm) and sand (larger than 0.05 mm). We use the United States Department 
of Agriculture (USDA) soil texture classifications as identified by the texture triangle (Figure 
1). Along each axis of the triangle, one can locate the share of soil particulates in each 
classification and trace a straight line towards the triangle’s interior. Texture is defined 
according to where these lines intersect. For example (Figure 1), if a soil is 30% clay, 20% 
silt and 50% sand, the texture is called sandy clay loam. All possible combinations can be 
found on the triangle, and are sorted into 12 categories.  

                                                 
3 Related measurements are organic carbon content or soil carbon content. These measures are highly correlated, 
and can effectively be thought of as rebased measures of each other. 
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Figure 1. USDA Soil Texture Triangle (e.g., Sandy, Clay, Loam) 

 
Source: Adapted from USDA, online at: 
http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/?cid=nrcs142p2_054167 

 
While texture classification may seem to rely on tediously precise particulate and percentage 
measurements, it is actually one of the simplest and most dependable characteristic tests 
available. This is because a hand texture process allows a properly trained person to classify 
soils with a high degree of accuracy without the use of laboratory equipment (Thien 1979). 
Among other sources, most land grant university extension services in the U.S. provide 
tutorials for this process. Presley and Thien (2008), for one example, describe the process in a 
Kansas State University extension service (also see: 
http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/edu/?cid=nrcs142p2_054311). 

For our purposes, the key issue related to texture is that higher clay content soils tend to be 
more productive. This is for several reasons. First, clayish soils tend to hold moisture longer, 
making plant growth less vulnerable to weather fluctuations and drought. Higher clay content 
is also positively correlated with higher CECs and higher levels of SOM (and all the 
beneficial characteristics that go with them).  

2.3. Fertilizer and Other Determinants of Yield and Response Rates  

In addition to soil characteristics, we model yield as a function of management practices and 
other control variables. First, Zambian farmers apply either basal fertilizer, which is 10% 
nitrogen, 20% phosphates and 10% potash (potassium) or NPK=10-20-10, or top dress 
fertilizer, more commonly known as Urea (NPK=46-0-0). Of course, any fertilizer could be 
applied, but virtually all fertilizer used on maize in Zambia (>99%) is one of these blends.  

The timing of fertilizer application is another factor that affects yield response on farmer-
managed fields in our model, particularly for phosphorus. Phosphorus availability is 
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especially important at early stages of maize growth. Used as a building block of DNA, RNA, 
ATP (for photosynthesis) and phospholipids, phosphorus regulates cell division during early 
growth, and is key for the development of roots and protein formation (Jones et al. 2013). 
Late application (i.e., after planting time), which is common in Zambia, is thus expected to 
have a negative effect on yield response.  

Other control variables include the plant variety (sowing improved hybrid and OPV seeds or 
not) and seed application rate (kg/ha). The timing of planting with respect to the beginning of 
the rainy season is also relevant. Planting before or near the beginning of the first rains is 
beneficial since plants can then take advantage of moisture and the annual nutrient flush (the 
release of nutrients from organic material that has decomposed since the previous rainy 
season) (Haggblade, Kabwe, and Plerhoples 2011). Finally, a series of indicator variables 
control for yield differences related to tillage methods (ripping, ridging, bunding, plowing, 
basin, or zero tillage, each as compared to traditional hand hoeing).  

In addition to all of the above mentioned determinants, a wide range of data were collected 
regarding field management, including rates for liming, irrigation, agroforestry tree use, crop 
mixing, insecticide, herbicide, manure and compost, flooding and flood prevention. 
Unfortunately, there are too few observations (not enough variation) in our data to identify 
the effects of employing these techniques (from 5% to less than 1% of households employed 
each of these practices). We also cannot control for the effects of weeding due to lack of 
variation, but for the opposite reason―99% of the fields in the sample were weeded.4  

Having only cross-sectional data available, our model controls for unobserved factors related 
to farmer ability and labor availability to the extent possible using proxy variables. 
Specifically, we include the education level of the household head, the family land to labor 
ratio as well as an indicator for whether the family hired labor in our model. 

2.4. Empirical Model 

The above discussion leads to estimating a model of yield with conditional response to 
fertilizer where: 

(1)  E(yield | soilchar2)=f(basal, topdress, fert2, (soilchar1*fert), basal*weeks, soilchar2, 
seedrate, seedrate2, hybrid, early, late, tillage, educ, landlabratio, hirelab)  

Where:  yield = maize harvested (kg/ha) 

basal = basal fertilizer (kg/ha) – “Compound D” (NPK=10-20-10) 

  topdress = top dressing (kg/ha) – Urea (NPK=46-0-0) 

  fert = basal + topdress 

  weeks = number of weeks after planting for basal application 

  seedrate = seeding rate (kg/ha) 

  hybrid = was hybrid or open pollinated seed variety planted (1=yes) 

  early = did planting occur before ZARI recommendation (1=yes) 

                                                 
4 Weeding was quantified simply as number of weedings. A more detailed enumeration of this management 
practice would improve future analyses. 
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  late = did planting occur after ZARI recommendation (1=yes) 

tillage = vector of binary indicators for tillage method  

  educ = years of education for the household head 

  landlabratio = land to household labor ratio 

  hirelab = did household hire additional labor (1=yes) 

The variables soilchar1 and soilchar2 represent two of the soil characteristics used in this 
analysis. The yield function is quasi-linear conditional on one soil characteristic, and within 
each linear component, yield response is conditional on one other soil characteristic. Notice 
in addition to soil characteristics, yield response to basal fertilizer is conditional on the timing 
of application in relation to planting date, and yield response to total fertilizer is a quadratic 
function of application rates.  

Since we estimate unique yield responses to fertilizer for each observation, much discussion 
focuses on the mean of the average products (APs) of fertilizer across observations. The AP 
is the additional kilograms of maize attributable to each kilogram of fertilizer applied (kg/kg), 
the means of which can be disaggregated according to soil characteristics (or any other 
categorization). We also discuss cumulative distributions of the APs across the country. 
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3. DATA 

The sample for this survey is a sub-set of the observations interviewed during the Rural 
Agricultural Livelihoods Survey (RALS) carried out in May and June 2012 as a collaborative 
effort among the Indaba Agricultural Policy Research Institute (IAPRI), the Central Statistics 
Office (CSO), and the Zambian Ministry of Agriculture and Livestock (MAL). The standard 
enumeration areas (SEAs), as designated by CSO for census purposes, were selected using 
probability proportional to size, and a constant sample size of 20 households was surveyed in 
each SEA. Within selected observations in each SEA, 4 households were chosen at random to 
be included in the sub-sample used for this analysis. The RALS survey instrument covered a 
broad range of household economic data covering the 2011 harvest and 2012 marketing 
season.5 Among the households selected for soil sampling, an additional small survey 
collected information related to the 2012 harvest for the largest maize field and farm 
management and input use for that maize field in 2011.6 Each maize field in our sample was 
measured using a GPS device. For a full description of sampling methods, see 
IAPRI/CSO/MAL (2012). The sample village locations are illustrated in Figure 2. 

1,714 soil samples and largest maize field (LMF) surveys were collected from 1,680 
households. Soil samples outnumber households because fields with noticeable differences in 
slope or soil (e.g. color or texture) were sampled more than once (26 households provided 
two samples each and four households provided three samples). Data are aggregated to the 
field level as un-weighted means across soil samples. Of these 1,680 households, 12 are 
excluded because they lack all corresponding farm management data due to either enumerator 
or data entry errors that are treated as random occurrences. 
 
 
Figure 2. Village Locations Where Soil Samples Were Collected (Four Samples Each) 

 
Source: IAPRI/CSO/MAL. 2012; Google Earth. 

                                                 
5 The full questionnaire is available on-line at 
http://fsg.afre.msu.edu/zambia/2012_Rural_Agricultural_Livelihoods_Survey%28RALS%29.pdf 
6 The smaller questionnaire has not been posted on-line, but can be made available. 
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Of the 1,668 remaining, two observations used fertilizer without reporting quantities used and 
are, thus, dropped from econometric analysis. Ten replacement households in the LMF 
survey sample were not included in the RALS sample because respondents were unavailable.  

Twenty-three observations experienced total crop loss and harvested no area, thus having 
undefined yields. Of the remaining (N=1,633), 157 fields were in a wetland area, and are 
excluded from our analysis. A Chow test confirms the structural difference in the 
relationships between production factors and yields for this group and the remainder of the 
sample. Finally, 23 remaining observations report harvests on small fields that would 
correspond to yields greater than 14.5 mt/ha (about three standard deviations above the 
mean), which are excluded as outliers. As such, the final data we work with is from 1,453 
field-level observations. 

Enumerators and their supervisors were trained by ZARI to collected soil samples. Each 
sample analyzed was a composite of 10-20 sub-samples of soil collected throughout each 
field. The protocol for the number of sub-samples and the collection pattern throughout the 
field followed by enumerators was specified according to field size. Each sub-sample was a 
composite of equal parts soil in the 0-10 cm and 10-20 cm depth horizons, where the highest 
maize root density (cm root/cm3 soil) is found. For fields planted using ridge tillage, samples 
were taken directly from the ridges. A full description of the methods used to collect samples 
is described in IAPRI/CSO/MAL (2012). 

Soil texture was assessed manually following methods discussed above. Soil pH was 
analyzed in 0.01 M CaCl2 (calcium chloride) solution. Soil organic matter was following the 
Walkley and Black method (Walkley and Black 1934). CEC was analyzed using the 
ammonium acetate method at pH 7.0 and measurement of the sorbed ammonium (NH4) by 
titration following the exchange of sorbed NH4 with excess sodium chloride (NaCl). ZARI 
laboratory operators were trained by a team of soil scientists from the University of 
Wageningen and follow established protocols that can be implemented with the locally 
available equipment.  

Employing ZARI’s laboratory for soil analysis has obvious advantages, not least of which are 
their presence in Zambia, willingness to train soil sampling teams and a collegial relationship 
with the policy makers that stand to benefit from this study. One important caveat is that the 
ZARI laboratory is not formally accredited, meaning no recent, independently evaluated data 
are available to determine the reliability of our results. Specifically, it is useful to scrutinize 
the accuracy and precision (or respectively the external and internal validity) of test results. 
Accuracy, or closeness of test results to actual values, is typically evaluated by comparing 
blind test results to known parameters from fabricated samples. Unfortunately, this was not 
possible for our study (and should be a priority moving forward).  

Precision refers to the repeatability of test results; less variation within multiple tests of the 
same sample indicates greater precision. While we cannot demonstrate the accuracy of the 
ZARI results, confidence in the lab’s precision provides assurances that results are valid for 
comparing across samples. For example, a pH result measured as 7 may or may not be truly 
neutral, but if the lab has a high measureable degree of precision, we can be confident that the 
sample is less acidic (alkaline) than another sample with lower (higher) pH results.  

To evaluate ZARI’s precision, 2% of our observations were randomly selected for a second 
round of testing and comparison to initial measurements. Precision-check results are 
illustrated in Figure 3.  
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Figure 3. Assessment of the Precision of ZARI Laboratory Results 

  

  

Sources: IAPRI/CSO/MAL 2012.  
Note: Soil analysis conducted at the Zambia Agricultural Research Institute laboratories, Mt. Makulu, Zambia. 
 

Clockwise, starting from the top left, each panel is a scatter plot of initial results on the 
horizontal axis and re-testing results on the vertical axis for pH, organic carbon, and CEC. 
Observations on the 45o line (shown) demonstrate exact precision. 

To formalize the comparison we report results from regressing the initial results on the re-test 
results without an intercept (thus, a coefficient estimate of “1” would suggest exact precision, 
on average). In each case, our estimate is substantively close to 1 and we fail to reject the 
hypothesis that each coefficient is one (p < 0.05). The R-squared comparing initial to re-test 
results for pH, organic carbon, and CEC are 0.996, 0.91, and 0.75 respectively.  

Texture is a categorization rather than a continuous variable, and so it doesn’t lend itself to 
this type of evaluation. That said, this is one of the simplest tests to carry out, and such 
analyses are seldom questioned. In addition, we include texture in our model as more general 
categories according to clay content (see below), so the effects of potential measurement 
error are likely to be low. 

Soil analysis is summarized in Table 1. According to ZARI, the large variability observed for 
organic C, CEC and soil pH is credible. Variability in CEC and soil pH, for example, could 
be driven by strong differences in soil weathering observed across the country which includes 
strongly weathered soils (e.g., ferralsols and podzols), soils that are little weathered 
(cambisols and luvisols) and saline soils (Mambo and Phiri 2003). Similarly, high organic 
matter could be explained by excessive soil moisture as in histosols.  

Overall, we conclude the sum of evidence suggests ZARI test results have an acceptable level 
of precision for the present analysis, but we are not able to attest to the laboratory’s accuracy. 
The implications of these conclusions vis-à-vis our estimation approach is discussed in the 
next section. 

initial=1.02 x repeat initial=1.09 x repeat 

initial=0.81 x repeat 
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Table 1. Summary of Zambian Field-Level Soil Analysis Results 

   ------------------Percentile------------------- 
Soil characteristic Mean Std. dev. 1 25 50 75 99 

Soil pH (Acidity) 5.38 0.62 4.00 5.00 5.30 5.80 6.80 
Organic Matter (%) 1.85 0.70 0.34 1.37 1.80 2.28 3.39 

Cation Exchange 
Capacity (meq) 9.77 5.62 1.52 6.04 8.37 12.3 26.8 

Source: IAPRI/CSO/MAL 2012 and ZARI soil analysis (N= 1,453). 

 

  



12 
 

4. ESTIMATING YIELD RESPONSE TO FERTILIZER 

Soil characteristics enter the yield function as interaction terms and by specifying a quasi-
linear functional form. That is, the effects of fertilizer and other determinants are allowed to 
differ systemically depending on whether soil characteristic measurements are above or 
below estimated threshold levels. The concept of thresholds in the process of plant growth is 
well established in the agronomic literature; a nice illustration of this is the law of the 
minimum mentioned earlier.  

Marenya and Barrett (2009a; 2009b) use this principal to motivate a quasi-linear yield model 
using data from Western Kenya and soil organic matter as the threshold variable. Matsumoto 
and Yamano (2013) used a similar model and procedure to study fertilizer effects in parts of 
Uganda and Kenya. Each concluded that below a critical level of SOM, yield response 
significantly decreases. Burke, Jayne, and Black (forthcoming) apply the threshold principle 
to yield response to fertilizer with respect to soil pH levels. In that case, however, thresholds 
were imposed ex ante (not estimated) based on levels published by ZARI (2002) and 
elsewhere in agronomic literature. 

4.1. Model Specification With Respect to Soil Characteristics 

Unlike previous studies, a key to this analysis is that we do not rely on just one measure of 
soil quality. Specifically, we use data for four different measures (pH, CEC, SOM, and 
texture). It is infeasible to use all of these in the same model with our data because some 
characteristics are highly correlated. For example, as measures of soil chemistry, pH and 
CEC are often correlated with each other. Soil clay content and soil organic matter are also 
correlated with each other, so our models include either texture or SOM, and either pH or 
CEC. 

For our primary analysis, we estimate two models: 1) allowing yield and response to fertilizer 
to be conditional on pH and SOM, and 2) replacing SOM in the model with soil texture. In 
two alternative models, we could replace pH with CEC. For now we focus on pH because of 
the relative measurement precision (Figure 3). Results from models including CEC are also 
available (Figure 6) and briefly discussed below.  

Since texture is a categorical variable, we do not formally search for thresholds, per se. 
Rather, we group textures into four meta-categories according to clay content. As illustrated 
in Figure 4, soils in group 1 (sand, loamy sand and silt) have virtually no clay, those in group 
2 (sandy loam, loam and silt loam) are roughly between 5-25% clay, group 3 (sandy clay 
loam, clay loam and silty clay loam) is about 25-40% clay, and group 4 (sandy clay, silty clay 
and clay) is 40-100% clay. These categories represent 17%, 25%, 51% and 7% of our sample 
respectively. For all other soil characteristics, we estimate thresholds as described presently.  

4.2. Estimating Thresholds 

Knowledge regarding the approximate values at which we might expect to find threshold 
effects can be found in the literature. George, Horst, and Neumann (2012),7 for example, 
suggest a critical value for pH is 5.5, which is consistent with the ZARI maize production 
guidelines. Interviews with ZARI crop and soil scientists indicated we might expect to find a  

                                                 
7 It is important to note George, Horst, and Neumann (2012) do not specify whether they measured pH in Cacl2 
(as we have) or in water. This would affect the comparability of results.  
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Figure 4. Soil Category Groups According to Clay Content 

 

Source: Adapted from USDA, online at: 
http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/edu/?cid=nrcs142p2_054311 
 

SOM threshold between 1% and 2%. Despite extant knowledge, however, we maintain it is 
best practice to estimate (rather than impose) thresholds; recall our independent assessment of 
the lab tells us nothing about the accuracy of our data but gives us confidence in its precision 
(i.e., we would rather rely on the evidence-supported internal validity of our data than the 
unknown degree of external validity). 

We allow for two types of threshold effects (“type 1” and “type 2”). A type 1 threshold 
variable (T1) acts to shift expected yield and it’s response to fertilizer depending on whether 
T1 is above or below a threshold to be estimated, ሺߠଵሻ. Mathematically, this can be written 
as: 

݈݀݁݅ݕ        (2) ൌ ܨଵߚ	 ൅	ߚଶ݀ ൅ ܨଷሺߚ ∙ ݀ሻ ൅  ࢽࢄ

where	݀ ൌ
0	if	ܶ1 ൑ ଵߠ
1	if	ܶ1 ൐ ଵߠ

 

Where F is the level of fertilizer application and X is the vector of other control variables 
previously described. ߚ and ࢽ are coefficients and ߠଵ is the threshold parameter, all to be 
estimated.  

A type 2 threshold variable (T2) affects the entire production function depending on whether 
T2 is above or below a (different) threshold to be estimated ሺߠଶሻ, as in: 

݈݀݁݅ݕ    (3) ൌ 	
ܨଵଵߚ ൅	ߚଶଵ݀ ൅ ܨଷଵሺߚ ∙ ݀ሻ ൅ ܶ2	if				૚ࢽࢄ ൑ ଶߠ
ܨଵଶߚ ൅	ߚଶଶ݀ ൅ ܨଷଶሺߚ ∙ ݀ሻ ൅ ܶ2	if				૛ࢽࢄ ൐ ଶߠ
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At this point, two questions emerge: 1) Why have two types of thresholds, and 2) how should 
they be estimated? The answer to the first question is a simple matter of balancing flexibility 
with feasibility. The most flexible way to allow soil characteristics into the model would be 
to treat them all as type 2 threshold variables, but in the present application, this would 
require more data than are available. So, to allow for the flexibility of having more than one 
measure of soil quality, we impose the restriction that one measure affects only response to 
fertilizer (and the intercept).  

Regarding the second question, we use a grid search approach similar to that used by 
Marenya and Barrett (2009a) to estimate the threshold values ߠଵ and ߠଶ, which is common, 
for example, in threshold cointegration literature (Balke and Fomby 1997). That is, we 
estimate the model under all feasible assumptions regarding the values of ߠଵ and ߠଶ and 
select that which best fits the data.  

Since we have two threshold values to estimate, an iterative process is employed. First, we 
estimate ߠ෠ଵ using an ordinary least squares (OLS)-based grid search and the full sample 
(assuming ሺߠଶ ൌ 0ሻ). Second, we estimate ߠ෠ଶ assuming ߠଵ ൌ  ෠ଵ is the same in both T2ߠ
regimes. Third, we update our prior, now assuming ሺߠଶ ൌ  ෠ଶሻ and re-estimate the T1ߠ
threshold value within each T2-based regime. Call these new estimates ߠ෠ଵଵ and ߠ෠ଵଶ for the 
low T2 and high T2 regimes respectively. A specified convergence rule could be applied and 
this process could go on until it is satisfied, but in each of our cases, this proves unnecessary. 

To justify splitting the sample into two T2-based regimes we conduct a Chow test. If we 
reject the null hypothesis that the yield function is no different between regimes, OLS within 
each regime (holding standard assumptions) provides unbiased estimates, and the usual t-
statistics can be used for inference. Since the estimates ߠ෠ଶ, ߠ෠ଵଵ and ߠ෠ଵଶ do not have a known 
distribution (standard errors are “nuisance parameters”), we conduct hypothesis testing on 
them using bootstrapped standard errors, as described in Hansen (1996) and used by Marenya 
and Barrett (2009a). 
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5. RESULTS  

We report the results one model specification at a time, as described in the sub-headings 
according to which soil characteristic is used as each threshold type. 

5.1. Model 1: SOM=Type 1 and pH=Type 2 

Select estimate results from the model including SOM and pH are shown in Table 2 (several 
controls are included in regressions as described but not shown. Full results are available). To 
estimate this model, we first search for a SOM threshold-affecting yield and fertilizer 
response (only), which is initially identified at 1.2%. Then, assuming this threshold holds 
throughout the model, we search for a pH threshold to identify two regimes for the entire 
production function. The total sum of squared residuals for the model is minimized at the pH 
threshold level of 5.4. A Chow test rejects the hypothesis that these regimes are no different 
(p=0.00) and the bootstrapped standard error suggests the threshold value itself is statistically 
significantly different from zero at the 1% level. Finally, within each pH regime, we re-
evaluate the potential SOM thresholds and estimate little or no change at 1.2% and 1.4% for 
the low and high pH regimes respectively. Note that pH and SOM thresholds are close to ex 
ante expectations.  

 
Table 2. Select Results with SOM as Type 1 and pH as Type 2 Threshold Variables  

           pH level 
pH threshold            5.4*** 

Bootstrap SE           (0.24) 

Chow p-value           (0.00) 

Regression results Low High 

Fertilizer rate 3.647*** 
(0.72)  

2.089+

(1.30) 

Fertilizer rate squared -0.001*** 

(0.00) 

0.001 

(0.00) 

High SOM -308.13* 

(159.9) 

-488.51* 

(287.2) 

High SOM*Fertilizer rate 2.157*** 

(0.61) 

3.434*** 

(0.86) 

SOM Threshold 1.2% 1.4% 

Weeks delay*Basal 
fertilizer rate 

-0.278 

(0.26) 

-0.593+

(0.36) 

N 831 622 

R2 0.51 0.44 

Weighted R2            0.48 
*, **, *** Indicate significance at the 10%, 5% and 1% levels respectively, + 
indicates significance at the 11% level. 
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Table 3a. Matrix of Maize Average Product (kg/kg) of Basal Fertilizer 

  pH level 
  Low <=5.4 High >5.4 

Soil Organic 
Matter 

High  
4.47*** 
(0.56) 
[n=91] 

3.90*** 
(0.84) 
[n=294] 

Threshold 1.2% 1.4% 

Low  
2.22*** 
(0.68) 
[n=107] 

0.37 
(0.92) 
[n=495] 

Source: IAPRI/CSO/MAL 2012. Delta-method standard errors in parentheses, sub-sample sizes in 
brackets. Note – APs include fertilizer users only. 

 

Table 3b. Matrix of Maize Average Product (kg/kg) of Top Dress Fertilizer 

  pH level 
  Low <=5.4 High >5.4 

Soil Organic 
Matter 

High  
4.91*** 
(0.85) 
[n=91] 

5.72*** 
(0.83) 
[n=294] 

Threshold 1.2% 1.4% 

Low  
3.16*** 
(0.70) 
[n=107] 

2.28* 
(1.18) 
[n=495] 

Source: IAPRI/CSO/MAL 2012. Delta-method standard errors in parentheses, sub-sample sizes in 
brackets. Note – APs include fertilizer users only. 

 

To better understand these results, the mean APs (amongst fertilizer users) of the two types of 
fertilizer used in Zambia are presented in Tables 3a and 3b by pH and SOM regimes. The 
first (3a) shows the AP for basal and the second (3b) shows the AP for top dressing. Again, a 
key difference between the two is that the AP of basal is modeled as a function of application 
delays while the AP for urea is not.  

For both types of fertilizer, results with respect to the effect of SOM regimes are consistent 
with expectation and in line with earlier results reported in Marenya and Barrett (2009a) and 
elsewhere. Specifically, for a given type of fertilizer and pH regime, the mean AP of fertilizer 
is between 1.75 and 3.5 kg/kg higher on soils with higher SOM levels. This amounts to a 
difference between 55% to well over than 100%. 

For urea, where SOM is above the critical threshold, the average product of fertilizer is 
greater on higher pH soils, as expected (5.7 kg/kg versus 4.9 kg/kg). On lower SOM soils, on 
the other hand, the estimated AP of urea is greater on acidic soils, which is counterintuitive. 
Similarly, the estimated AP for basal fertilizer is higher on more acidic soils regardless of 
SOM regimes (Figure 5). 

In the three latter cases (low SOM for urea, and high and low SOM for basal) these results 
are less confounding when we examine results beyond the mean effects. Figure 5 shows 
scatter plots of the estimated average product of fertilizers for each observation by fertilizer 
type and soil quality regimes. Notice the variability of estimated effects of urea (top panels) 
when SOM is below its critical thresholds is greater on lower pH soils.  
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Figure 5. Scatter Plots of Estimated Average Product of Fertilizers by Type and Soil 
Regimes for Model 1: SOM=Type 1 Threshold and Ph=Type 2 Threshold 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Source: IAPRI/CSO/MAL 2012 and authors' calculations. 
Notes: Each dot indicates an individual observation’s estimated AP. Numbers within the plots indicate the mean 
AP amongst observations in each regime. *, ** and *** respectively indicate statistical significantly different 
from zero at the 10, 5 and 1% level (e.g., the mean AP of basal fertilizer amongst those in the high pH and high 
SOM regimes is 3.9 kg/kg, significant at the 1% level) 
 

In other words, while the mean estimated AP of urea is somewhat lower on less acidic soils, 
the risk of lower response rates is greater on more acidic soils, which is consistent with 
known agronomic principles. 

Figure 5 also underscores the importance of controlling for delayed application when 
examining the APs of basal. So again, the unexpected difference in mean AP across pH 
regimes becomes more sensible when the distribution of estimates is examined more 
generally (bottom panels of Figure 5). Recall from Table 2, for every week after planting 
basal fertilizer application is delayed on acidic soils, the expected AP decreases by about 0.3 
kg/kg. Figure 5 illustrates the potential yield effects of basal fertilization are greater on less 
acidic soils, where on-time application has an estimated AP greater than 6 kg/kg. However, 
that potential decreases roughly twice as much for each week after planting a farmer applies 
basal as compared to delays on more acidic soils. Moreover, while neither two-sided tests 
reject the hypothesis that the effect of delayed application is statistically significantly 
different from zero, one sided tests in the high pH regimes fail to reject the hypothesis that 
delays have a strictly negative effect and reject the hypothesis that the effect is non-negative 
(p=0.06) 

2.2*** 

4.5***

0.4

3.9*** 

3.2*** 2.3*

4.9***
5.7*** 



18 
 

Table 4. Select Results with Texture as Type 1 and pH as Type 2 Threshold Variables  

pH threshold            5.6*** 
Bootstrap SE           (0.26) 
Chow p-value           (0.00) 
         pH regime 
Regression results Low High 
Fertilizer rate 3.664*** 3.30+ 

 (0.67) (2.06) 

Rate squared -0.001*** -0.44 e-3 

 (0.3e-3) (0.7e-3) 

Clay group   

1 - very low Subsumed Subsumed 
 - - 

2 116.85 219.25 

 (176.6) (412.3) 

3 333.72 * -262.57 

 (187.6) (371.7) 

4 - more than about 40% 135.27 88.37 

 (247.8) (394.0) 

Fertilizer rate  
      x  Clay group 

  

1 - very low Subsumed Subsumed 
 - - 

2 1.528** 1.677 

 (0.70) (2.42) 

3 1.074+ 3.886* 

 (0.72) (2.26) 

4 - more than about 40% 1.274+ 2.966 

 (0.90) (2.61) 

Weeks delay*Fert rate -0.364 -0.826+ 

 (0.25) (0.56) 

N 1002 451 
R2 0.47 0.47 
Weighted R2          0.47 
*, **, *** Indicate significance at the 10%, 5% and 1% levels respectively, + 
indicates significance at the 15% level. The delta-method was used to estimate SEs 
of the AFE. 

5.2. Model 2: Clay Content=Type 1 and pH=Type 2 

Table 4 shows select results from the alternative model where soil texture categories replace 
SOM as the type 1 threshold variable. In this model, soil texture categories are established 
prior to estimation and a grid search is employed to identify the pH regimes that minimize the 
sum of squared errors. Here the estimated pH threshold is found at 5.6, which is also close to 
ex ante expectations (ZARI 2002). 
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Tables 5a and 5b present mean AP estimates by texture and pH regimes analogously to 
Tables 3a and 3b as described for model 1. For a given pH regime and fertilizer type, these 
results are again consistent with ex ante expectations. The mean AP of fertilizers is lowest on 
the lowest clay content soils. Again, though, understanding the impacts of soil acidity 
requires more than a cursory examination of mean effects. The counterintuitive results 
(suggesting fertilizers are more effective on more acidic soils) are again explained by the 
importance of timely application. Here too, the estimated cost of delayed application is 
roughly twice as great on higher pH soils, and again the estimated effect has a higher 
variance on more acidic (lower pH) soils. 

 
Table 5a. Matrix of Maize Average Product (kg/kg) of Basal Fertilizer 

  pH level 
  Low <=5.6 High >5.6 

Soil texture 
group 

Less clay - 1  
2.27*** 
(0.70) 
[n=84] 

0.34 
(2.61) 
[n=33] 

2 
3.79*** 
(0.75) 
[n=205] 

2.17** 
(1.07) 
[n=61] 

3 
3.40*** 
(0.77) 
[n=367] 

4.47*** 
(1.21) 
[n=145] 

More clay - 4  
3.75*** 
(0.91) 
[n=39] 

3.60* 
(1.95) 
[n=23] 

Source: IAPRI/CSO/MAL 2012. Delta-method standard errors in parentheses, sub-sample sizes in 
brackets. Note – APEs include fertilizer users only. 

 

Table 5b. Matrix of Maize Average Product (kg/kg) of Top Dressing Fertilizer 

  pH level 
  Low <=5.6 High >5.6 

Soil texture 
group 

Less clay - 1  
3.54*** 
(0.65) 
[n=85] 

3.22 
(2.04) 
[n=32] 

2 
5.06*** 
(0.75) 
[n=208] 

4.89*** 
(1.71) 
[n=64] 

3 
4.61*** 
(0.85) 
[n=376] 

7.11*** 
(1.34) 
[n=150] 

More clay - 4  
4.81*** 
(0.92) 
[n=40] 

6.19*** 
(1.95) 
[n=25] 

Source: IAPRI/CSO/MAL 2012. Delta-method standard errors in parentheses, sub-sample sizes in 
brackets. Note – APEs include fertilizer users only.
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5.3. Profitability and the Robustness of Findings to Model Specification 

So far, we have only discussed results of two models out of several possible specifications. 
Moreover, for better or worse, no theory is readily available to base a decision regarding 
which specification is best. To address this, Figure 6 illustrates results from models 1 and 2 as 
well as several additional specifications in the form of the cumulative distributions of 
estimated average product of  (basal) fertilizer (a similar figure for top dressing shows similar 
results). Each of six models (M1 to M6) are described in the legend with the type 1 threshold 
variable listed first, followed by the type 2 threshold variable (M1 and M2 are the models 
discussed above). This clearly illustrates that our results describing the distribution of APs for 
the overall population are robust to model specification.  

Reference lines on Figure 6 are at 3.2, 4.8, and 6.4 kg of maize per kg of fertilizer applied. 
These respectively indicate average value cost ratios (AVCR) of 1, 1.5 and 2 for fertilizer 
applications based on mean commercial prices paid for fertilizer (ZMK 3,723/kg) and harvest 
time (May-July) commercial maize prices (ZMK 1,177/kg) reported by farmers in the RALS 
2012 data. An AVCR equal to 1 indicates the fiscal break even point, irrespective of transfer 
costs. In this case, the various models predict between roughly 25-45% of fertilizer users 
operate at a fiscal loss. Kelly (2005) suggests an AVCR of at least 2 is required for 
smallholder farmers to adopt a technology because of transfer costs and risk aversion. Using 
Kelly’s suggestion, we would conclude virtually no farmers break even using basal fertilizer 
regardless of model specification.  
 

Figure 6. Cumulative Distribution of Average Product of Fertilizer Estimates (amongst 
Fertilizer Users) under Various Model Specifications 

   
Source: IAPRI/CSO/MAL 2012 and authors' calculations. 
Notes: Model 1 (M1)-SOM=Type 1 (T1) threshold and pH=Type 2 (T2) threshold; M2-Texture=T1 and pH=T2; 
M3-SOM=T1 and CEC=T2; M4-texture=T1 and CEC=T2; M5-pH=T1 and SOM=T2; M6-CEC=T1 and 
SOM=T2. 
Reference lines are at 3.2, 4.8 and 6.4 marginal kg of maize per kg of fertilizer applied.  
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6. POPULATION IMPACT ON INTENSIFICATION AND SOIL 
CHARACTERISTICS 

Our analysis so far has examined how degraded soil may affect yields both independent of 
fertilizer use and by rendering plants less responsive to fertilizers. The current situation is 
alarming, but improved productivity will be of greater importance in the future as rural and 
urban population densities increase. Looking forward, this section examines how rising 
population may affect productivity. We investigate: a) whether fallow periods can be 
expected to decrease (farmland use intensity can be expected to increase) as population 
density increases, and if so, b) whether increased intensity will lead to further land 
degradation given current soil management practices.  

6.1. Population Effects on Land Use Intensity 

We examine the implications of population pressure by combining our sample with data on 
land use from annual crop forecast surveys and the 2010 population census. A common 
measure of land-use intensity is the ratio of fallow-land to total-farmland (fallow plus 
cultivated, or fallow, cultivated and virgin farmland) (Boserup 1965). Table 6 shows several 
simple regression estimates of 2012 fallow ratios on 2010 district population densities. 
Variables on both left and right hand sides of these regressions are at the district level, 
however we have assigned them to our household-level sample to maintain national 
representativeness (i.e., to account for variance in district size). Also, note the full sample 
regressions only include the 1390 households in districts where the administrative boundaries 
did not change between 2010 and 2012 (several boundaries were revised after the 2011 
presidential election).  

The first four columns of Table 6 exclude virgin land from the fallow ratio calculations while 
results in columns (v) through (viii) include virgin land. Each equation is estimated four 
times, using: 1) the full sample; 2) only those observations where population density is less 
than 1,000 persons per square kilometer (persons/km2) (excluding 8 observations); 3) only 
those observations where population density is less than 500 persons/km2 (excluding eight 
more observations); and 4) only those observations where population density is less than 200 
persons/km2 (excluding 23 more observations). These various levels of density truncation are 
chosen subjectively to demonstrate how the relationship meaningfully (and statistically 
significantly, not shown) changes. 

Regression results consistently show areas with higher population density demonstrably use 
land more intensively. Moreover, the effect is more dramatic when we exclude already 
densely populated areas. Column (iv), for example, excludes observations in districts with 
more than 200 persons/km2 (e.g., Ndola, Lusaka, etc.) Results indicate the mean fallow ratio 
is about 25% of non-virgin farmland when population density is very low, however, an 
increase in population density to about 180 persons/km2 can be expected to effectively reduce 
that fallow ratio to zero. 

Figure 7 further illustrates the relationship between population density and fallow ratios using 
the results (not shown) from quantile regression. The vertical axis indicates the fallow ratio 
(excluding virgin land) and the horizontal axis indicates population percentiles. Each line in 
Figure 7 represents predicted percentiles for various given population densities from sparse 
(effectively 0 persons/km2) to 100 persons/km2. In this example, we include observations in 
districts with fewer than 100 persons/km2 (n=1320). 
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Table 6. Land Use Intensity (Ratio of Fallow to Farm Land) as a Function of Population Density 

 Dependent variable 
 F/(F+C) F/(F+C+V) 
 (i) (ii) (iii) (iv) (v) (vi) (vi) (vii) 
Pop densitya  -0.110*** -0.295*** -0.477*** -1.393*** -0.070*** -0.184*** -0.322*** -0.821*** 
Constant 0.221*** 0.226*** 0.231*** 0.251*** 0.160*** 0.163*** 0.167*** 0.178*** 
Model All obs PD<1 PD<0.5 PD<0.2 All obs PD<1 PD<0.5 PD<0.2 
N 1390 1382 1374 1351 1390 1382 1374 1351 
R2 0.011 0.022 0.024 0.097 0.010 0.019 0.024 0.075 
F – Fallow; C – Cultivated; V – Virgin 
Notes – a) Population density measured in thousands of people per square kilometer according to 2010 census data. 

 

Figure 7. Predicted Quantiles of Fallow Ratio as Population Density Increases  

 
Sources: IAPRI/CSO/MAL 2012 Crop forecast surveys and authors’ calculations. 
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Each line in Figure 7 can be thought of as an estimated cumulative population density for 
fallow ratios. Consider, for example, a fallow ratio of 0.1. These results suggest that in 
sparsely populated areas (solid line) essentially every farmer fallows at least this much land. 
At a population density of 25 persons/km2 (small-dotted line), a little more than 10% of the 
population is expected to have a fallow ratio of 0.1 or lower. Where there are 50 persons/km2, 
40% have an expected fallow ratio below 0.1, and for the two simulations with population 
densities greater than 50 persons/km2, we estimate three-quarters or more of the population 
fallow just a tenth of their land or less. 

In short, these results are consistent with the Boserup’s principle that areas with higher 
population density tend to use their farmland more intensively, and so as population density 
increases over time we can expect more intensive farming.  

6.2. Decreased Fallow Effects on Soil 

The final question is whether we should expect future intensification to be sustainable based 
on observed management practices. We begin to inform this discussion by examining how 
fallow ratios relate to SOM and pH, controlling for farm management practices insofar as our 
data allows. Table 7 presents results from several instrumental variables estimations for the 
determinants of pH and SOM. We suspect the fallow ratio is endogenous in these equations 
because there may be two-way causality between population density and soil quality. We 
control for endogeneity using population density and distance to the nearest town as 
instruments.8  
 

Table 7. Population and Management Factors Affecting Soil Organic Matter and pH 

Control variables 
Soil measurement 

pH SOM 
District fallow/cultivable ratioa 8.05** 2.29 
 (3.42) (3.04) 
Maize last year (1=yes) 0.04 -0.10* 
 (0.06) (0.05) 
Fallow last year (1=yes) -0.16 -0.12 
 (0.19) (0.16) 
Planted with N-fixing legume (1=yes) 0.35** 0.21* 
 (0.17) (0.11) 
“Agro-forestry” trees in field (1=yes) 0.31** 0.24** 
 (0.15) (0.10) 
Fertilizer application rate (100 kg/ha) -0.01 -0.01 
 (0.01) (0.01) 
Provincial Fixed Effects (not shown) Yes Yes 

Constant 3.62*** 1.52** 
 (0.74) (0.66) 
N 1390 1389 
R2 0.05 0.12 
Notes: *, **, *** indicate statistical significance at the 10%, 5% and 1% levels respectively. a) Regressor 
treated as endogenous using District population density and village distance to nearest town as additional 
instruments. 

                                                 
8 These results are again restricted to the 1,390 observations in districts with consistent administrative 
boundaries from 2010 to 2012. One additional outlier is excluded from the SOM regression. This outlier is not 
influential in the previous analyses since the value is reduced to a binary threshold/regime indicator. 
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In addition to the fallow ratio, indicator variables are included for: 1) whether the field was 
planted with maize in the previous year as well; 2) whether the field was fallowed in the 
previous year; 3) whether the current harvest was planted along with nitrogen fixing legumes; 
and 4) whether the field contains agro-forestry trees. Finally, the contemporaneous fertilizer 
application rate is included as are Provincial fixed effects. 

All else equal, expected soil pH increases significantly (becomes/remains less acidic) as 
fallow ratios increase. For example, the data-mean fallow ratio is about 0.20. Compared to no 
fallow, this suggests a difference of 1.6 on the pH scale, which could have a profound impact 
on yields and response to fertilizer. The effect of fallow is similarly positive in the SOM 
model, however not statistically significantly different than zero. We do find that SOM is 
expected to be lower on fields where maize has been farmed for at least the prior two years, 
as expected. We see no effect from previous year fallow, though with fewer than 3.5% of our 
observations having fallowed previously, this is neither surprising nor indicative of the 
benefits of fallow. 

In the models for both SOM and pH, we find positive and significant improvements in soil 
conditions associated with the practices of agro-forestry and legume intercropping. While this 
result is consistent with expectations, it is worth noting that the estimated effects are 
statistically significant despite very low adoption rates (i.e., very little variation in the data).  

To summarize this discussion, we argue that the big-picture perspective further emphasizes 
the urgency of the analysis in prior sections. It is underappreciated that soils with unfavorable 
physical, chemical, and biological properties host crops that are less responsive to fertilizers, 
but threats to productivity run even deeper. Imminent population growth is not in doubt. We 
have endeavored to show empirically that we can expect further farmland intensification to 
accompany population growth; when land is carrying as few as 100 persons per square 
kilometer, we may see as much as 75% of farmland under continuous use (Figure 7). 
Moreover, barring the adoption of (currently rare) management practices, we expect 
intensification to negatively affect soil quality and input productivity. In short, while it is 
important to recognize that status-quo input use is not particularly productive, it is perhaps 
more important to acknowledge the indicators on the horizon that the trajectory of 
productivity may turn down if more appropriate practices are not adopted. 
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7. CONCLUSION 

In this article, we incorporate farm management and household data with soil analysis to 
understand and quantify the variable and low response rates to inorganic fertilizer 
applications. Unlike earlier work, we develop a model that simultaneously allows for the 
effects of multiple soil characteristics and critical thresholds. We estimate critical threshold 
effects on yield response to fertilizer between pH levels of 5.4 and 5.6, soil organic matter 
levels 1.2-1.4%, and we find significant texture-related effects. Alternative models 
incorporate these characteristics and cation exchange capacity to demonstrate robustness to 
model specification. Several average yield response estimates range from not significant to 
5.7 maize kg/fertilizer kg depending on soil characteristics. We find fertilizer use unprofitable 
at commercial prices for the majority of Zambian fields (under current practices). Even if 
transfer costs are ignored, up to 45% of fertilized fields have an estimated average value-cost 
ratio for fertilizer less than one at commercial prices. 

Several key implications emerge from this study. First, it is well known that soil 
characteristics vary widely across Africa and even within countries. Nevertheless, far more 
policy focus is given to encouraging inputs use than to the appropriateness of the 
technologies being promoted. Our article contributes to a growing literature that consistently 
suggests inputs’ yield effects can be dramatically limited (or enhanced) depending on 
prevailing conditions. We believe it is important to continue pursuing this vein of literature so 
as to build knowledge regarding the actual effectiveness of the inputs being used and 
promoted, the determinants of that effectiveness on farms (as opposed to field trials) and to 
identify possible complementary (or substitutive) practices that could sustainably increase 
farm yields. 

Second, promoting timely fertilizer application could be a potentially powerful lever to 
increase the productivity of blended fertilizers. Farmers often delay applications to avoid risk, 
fearing that applications to soil before germination may go to waste. Another cause for delay, 
at least in Zambia, is frequently a lack of availability as government acquired fertilizers are 
delayed due to payment or customs issues. Addressing farmer risk aversion is potentially a 
very powerful policy lever, but a difficult one to pull. Avoiding delays due to administrative 
issues is more likely to be a tenable option. 

Third, another policy lever that appears to be underutilized is research and extension. 
Developing and sharing knowledge regarding efficient input use, by nearly all accounts, will 
more effectively lead towards sustainable intensification than the naïve and generalized 
promotion of fertilizer types and application rates. In Zambia and other African countries, 
agricultural research institutions are underfunded and extension agencies are essentially 
defunct, largely because the bulk of financial and human resources are dedicated to subsidy 
programs. Diversification of productivity enhancing strategies is another potentially very 
powerful policy lever. 

Finally, the urgency behind addressing low and variable land productivity will only increase 
in the near future. Empirical evidence presented here strongly supports the hypothesis that as 
population increases, we can expect land use intensity to increase (or fallow periods to 
decrease). Furthermore, under current management practices we can expect increasing 
intensity to lead to further land degradation. One could view this as discouraging. On the 
other hand, one might consider the array of under-promoted and under-employed alternatives 
to naïve fertilizer applications as a readily available opportunity to affect yields in the near 
and long-term.  
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Producing more on the same land, with the same or fewer additional inputs, increasing rural 
farm incomes and the advantageous social outcomes that go with it are attainable goals. 
Accomplishing these goals, however, is almost certainly going to require the scope of 
prevailing strategies to broaden. The sooner the better. 
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