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Summary 

This Quantitative Fisheries Center Technical Report provides initial parameter 
values used in a stochastic simulation model for yellow perch Perca flavescens in 
southern Lake Michigan.  The stochastic simulation model was developed, in large part, 
from previous stock assessment models (Wilberg et al., 2005).  The stochastic simulation 
model was used to evaluate performance of alternative harvest polices and is described in 
more detail in Irwin et al. (in press).  Additionally, Wilberg et al. (in press) used the 
simulation model to explore alternative cases of source-sink dynamics.  In total, these 
efforts are aimed at providing information to fisheries managemers as they consider 
alternate management strategies for the yellow perch fishery. 

This report is organized into three sections.  In Section 1, parameter definitions 
and equations used in the various population sub-models described in Irwin et al. (in 
press) are provided in Tables 1 and 2.  Initial parameter values, standard errors, and 
correlation coefficients for this base model are provided in appendix A.  Section 2 briefly 
describes modifications for an analysis evaluating the consequences of alternative source-
sink scenarios (Wilberg et al., in press) on harvest policy performance, with relevant 
modifications to starting parameters provided in appendix B.  Lastly, Section 3 
summarizes some analyses used to estimate stock-recruitment parameters, which were 
then used to represent alternative states of nature (recruitment hypotheses) as part of the 
overall harvest policy evaluation for yellow perch in southern Lake Michigan. 
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Section 1: Parameter definitions and equations 
The initial parameter values and corresponding standard errors and correlation 

coefficients provided here correspond to the model described in detail in Irwin et al. (in 
press), with an overview of that description also provided here.  The model was 
stochastic and projected the age-, sex-, size-, and spatial-dynamics of the yellow perch 
population in the southern basin of Lake Michigan.  Harvest policies represented 
combinations of levels of instantaneous fishing mortality and control rules (constant-F 
and two state-dependent rules).  The operating model included uncertainties that can be 
roughly grouped as (a) model uncertainty – uncertainty about the nature of the stock-
recruitment relationship, (b) parameter uncertainty – given a stock-recruitment 
relationship, uncertainty about parameter values for that relationship, (c) process 
uncertainty – given the model parameters, uncertainty about what specific process errors 
will occur during a given simulation, and (d) assessment and implementation uncertainty 
– uncertainty arising during a given simulation because of errors in population 
assessment and policy implementation.   

The model represented abundance of yellow perch in eight age groups ranging 
from age 2 through an age-9 “plus” group that was an aggregate group including ages 9 
and older.  All simulations began with the same initial abundance-at-age values (A.1), 
and recruitment during year one was specified as the average recruitment from stock 
assessment models for 1999-2002 (A.2).  Recruitment was defined as the number of age-
2 yellow perch entering the population annually and was generated for each management 
area, with an equal sex ratio at recruitment (equation T.2.1).  We included a separate 
recruitment model for the area-specific (“area”; equation T.2.2) and mixed-stock 
(“mixed”; equation T.2.3) recruitment hypotheses, within which two additional 
alternative hypotheses for future recruitment potential were represented (“recent” and 
“variable” recruitment hypotheses).  Depending on the recruitment hypothesis, log-scale 
Ricker model parameters were drawn from different multivariate normal distributions 
(i.e., these parameters varied across simulations) with variances and covariances equal to 
the asymptotic variance-covariance matrix derived from fitting Ricker models to stock-
assessment model estimates of spawning stock biomass (SSB) and recruitment time 
series (A.3-A.7; see Section 3 for additional details on estimation).  A multiplicative 
lognormal error was applied to median recruitment each year (i.e., recruitment was 
stochastic over time).  The log of the standard deviation of the recruitment errors was 
drawn from a normal distribution; the standard deviation of this distribution was 
estimated as part of fitting the Ricker models.     

For the case of “recent” productivity, Ricker parameters were based on spawner-
recruit patterns from stock assessment models for the 1993-2002 year classes (A.3-A.4; 
see Section 3).  For the case of “variable” productivity, parameters for two recruitment 
regimes were identified by classifying year classes as either “high” or “low”, regardless 
of the year, and fitting Ricker models to these subsets of data assuming a common 
density-dependent term (A.5-A.6).  For a given simulation of the variable recruitment 
hypothesis in the model, the selected Rickerα  parameter was scaled downward (c in 
equations T.2.2-T.2.3) for years designated to have “low” recruitment.  The designation 
of either a “high” or “low” recruitment regime for a given year was determined by a 
random Bernoulli variable.  The parameter of the Bernoulli distribution (probability of 
“high” recruitment) was drawn for each simulation from a uniform distribution, U[0.1, 
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0.25].  For area-recruitment hypotheses, recruitment errors were correlated among areas 
for a given year to replicate the high correlation in observed recruitment across areas 
(equation T.2.2; A.7).  Alternatively, the recruitment errors for the mixed-recruitment 
scenarios were applied to total recruitment (equation T.2.3), and total recruits were then 
allocated among the four management areas, with expected proportions of total recruits in 
an area derived from stock assessment models from 1996-2004 (A.8).  Process error was 
included by considering the proportions of returning recruits to be a random draw from a 
multinomial distribution with a sample size of 100 so that the expected proportions 
mimicked the variation in proportional recruitment seen in the stock assessments.  In 
connection with the implemented recruitment uncertainty, area-specific maximum-
recruitment levels (A.8) were imposed at four times the maximum estimated recruitment 
because simulations without this limit produced a few cases of unbelievably high 
recruitment that strongly influenced the performance statistics.   

The abundance of individual cohorts decreased over time as they aged and were 
exposed to sources of mortality that depended upon management area, year, age, and sex 
(equations T.2.1, T.2.4).  In all simulations, we assumed an instantaneous natural 
mortality rate of 0.37 yr-1 that was held constant across age, sex, area, and time as was the 
case for the assessment models (Wilberg et al., 2005).  Fishing mortality was scaled by 
age- and sex-specific selectivity that varied over time and among areas (equation T.2.5), 
although length-based selectivity was constant over sex, area, and time (Wilberg et al., 
2005).  The length-based selectivity pattern was the average selectivity for the 
recreational fishery in Wisconsin and Illinois (Wilberg et al., 2005).  Age-based 
selectivity was the weighted average of the length-based selectivities with weights equal 
to the numbers at length for a given age (equation T.2.6).  Thus, variation in growth 
across sex, area, and time led to the variation in age-based selectivity.  Fishery harvest 
was calculated within each management area, and total annual harvest was used as one of 
the performance statistics (equation T.2.7).  Modest movement of yellow perch among 
management areas occurred at the end of the year and was based on a migration matrix 
that was parameterized using mark-recapture data (Glover, 2005; equation T.2.1; A.9), 
with the annual amount of emigration for any one area not exceeding 20%. 

Growth was represented using a form of the incremental von Bertalanffy growth 
model that included density dependent and independent components (equations T.2.8-
T.2.9; A.10-A.12).  Increments in mean length from one age to the next in the following 
year were projected by management area and sex (equations T.2.8-T.2.9) so that female 
yellow perch grew faster and achieved a larger maximum total length than males.  
Density dependence was represented by modeling the intercept of the increment in mean 
length versus initial mean length relationship for each sex and area as a linear function of 
total abundance in that management area (equation T.2.9).  Density-independent variation 
in growth was incorporated by modeling the slope of the same relationship by a first-
order autoregressive process (AR(1); equation T.2.9; ).  For 
all autoregressive processes, the first value of the autocorrelated time series was drawn 

from a distribution, defined as

144.0 and 118.0 == ϕϕ σρ

⎟⎟
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ρ
σN , where σ  and ρ are the parameters of the 

AR(1) process (e.g.,  and for equation T.2.9).  Parameters of the growth models 
were estimated from mean-length-at-age data for each management area (Wilberg et al., 

ϕσ ϕρ
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2005).  However, these parameters estimates produced unreasonably large or small 
length-at-age values in the simulation model for population sizes that were outside those 
used in the estimation.  Therefore, we adjusted the parameter values of the density-
dependent component so that growth would be reasonable for population sizes outside 
those used to estimate model parameters while still being consistent with available data.  
A multivariate normal distribution was then used to generate parameter values 
( )110  and ,, bγγ  for the growth submodel for each simulation (A.11).  Next, annual size 
distributions for a given management area and sex were generated by allocating fish from 
each age class into thirty-one length bins ranging from <9 cm to ≥38 cm, in 1 cm 
increments.  Allocation among length bins was done assuming normally distributed 
length-at-age for each sex, with mean lengths-at-age from the von Bertalanffy model and 
corresponding CVs (Wilberg et al., 2005; equation T.2.10; A.13).  All simulations began 
with the same initial length-at-age values (A.14). 

SSB was calculated based on abundance by length categories of females at the 
start of the year (reproduction is in spring before growth or substantial mortality), mass-
at-length, and the proportion mature at length (equation T.2.11).  Mass-at-length was 
calculated for the mid-point of each total-length bin, and the relationship between length 
and mass was constant over time (Wisconsin Department of Natural Resources, 
unpublished data; equation T.2.12; A.15).  Female maturity-at-length followed a constant 
logistic function (equation T.2.13; A.15) based on a relationship determined for yellow 
perch collected in Indiana waters of Lake Michigan (Ball State University, unpublished 
data; also see Wilberg et al., 2005).  A description of harvest policies and the assessment 
and implementation errors associated with these policies (equations T.2.14-T.2.18; A.16) 
is provided in Irwin et al. (in press).  
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Table 1. Symbols and descriptions of variables used in the stochastic forecasting model 
(Table 2).  Structural parameters and parameters associated with stochastic errors are 
identified as constant over simulations and time (“constant”), randomly drawn for a given 
simulation (“sim”) or randomly drawn for each year (“year”).   
 

Symbol Description 
Index variables

y Year 
m Management area (WI, IL, IN, MI) 
g Sex  (male = 1, female = 2) 
a Age ( 2-9+) 
l Length bin (≤9, 9-10, …,37-38, ≥38 cm) 
r Recruitment hypothesis indicator 
  

State and control variables
N Actual abundance 
N̂  Assessed abundance 
R Recruits 

SSB Actual spawning stock biomass (kg, females) 
BŜS  Assessed spawning stock biomass (kg, females) 

BB0 Unfished spawning stock biomass (kg, females) 
T&  Transition matrix for post-recruitment movement 
b0 Intercept for density-dependent growth increment 
b1 Slope for density-dependent growth increment 
L Mean length (cm) 
W Mass-at-length (kg) 

Mat Maturity-at-length   

0

F
BT  Biomass threshold for state-dependent harvest policy 
* Asymptotic maximum target F  

F Actual instantaneous fishing mortality rate 
F~  Target F given estimated SSB 
F̂  F applied to N that would produce same catch as F~ applied to  N̂
Z Instantaneous total mortality rate 
C Catch in numbers (harvest) 
C~  Target catch that would result from applying F~ to  N̂
p&  Proportions at length for each age 
s Fishery selectivity 

 
Structural parameters

α  Ricker stock-recruitment parameter (sim) 
β  Ricker stock-recruitment parameter (sim) 
c Ricker stock-recruitment parameter (sim) 

Rmax Cap used to limit maximum recruitment (constant) 
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p Proportion of recruits allocated to an area (year) 
1b  Mean slope for density-dependent growth increment (sim) 
τ0 Intercept for density-dependent length at age 2  (constant) 
τ1 Slope for density-dependent length at age 2 (constant) 
γ0 Intercept for growth model intercept (sim) 
γ1 Slope for growth model intercept (sim) 

CVa  Coefficient of variation of length-at-age (constant) 
a&  Mass-at-length parameter (constant) 
b Mass-at-length parameter (constant) 

m1 Maturity-at-length parameter, slope (constant) 
m2 Maturity-at-length parameter, half-saturation (constant) 
M Instantaneous natural mortality rate (constant) 

 
Distributional parameters and associated stochastic errors

ϕρ  Autocorrelation coefficient for error in b1 (constant) 
φρ  Autocorrelation coefficient of assessment error (constant) 
ε Recruitment deviation (year) 
ζ Error for mean length at age 2 (year) 
δ Error in b1 (year) 
φ Error for δ (year) 
ψ Assessment error (year) 
φ  Error for ψ (year) 
ν Implementation error (year) 
εΣ  Variance-covariance matrix for correlated ε among m (sim) 
εσ  Standard deviation for ε  (sim) 
ζσ  Standard deviation for mean length at age 2 errors (constant) 
ϕσ  Standard deviation for b1 errors (constant) 
φσ  Standard deviation for assessment errors (constant) 
ςσ  Standard deviation for implementation errors (constant) 
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Table 2. Equations used in stochastic simulation model.   
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Note that some equations (T.2.2, T.2.3, T.2.8, T.2.9) are presented in greater detail with respect to the 
parameter values provided in the appendices here than was the case for a more simplified presentation in 
Irwin et al. (in press), which previously did not fully describe how some specific parameter values were 
incorporated into equations (e.g., scaling adjustments).
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Appendix A.  Specified input values needed for simulations.  These are parameters used in Table 2 that were constant over 
simulations or the mean or median (indicated with a “bar” e.g., β ), standard deviations, and correlations needed to define the 
distribution for parameters that were drawn randomly and varied among simulations or over time. 

 
 
Table A.1.  Starting values for abundance at age (Ny=0,m,g,a) by management area and sex.   

Sex Area    Age     
  2 3 4 5 6 7 8 9+ 

Male Wisconsin 260 848 180 096 22 745 0 6 741 272 663 17 503 20 553
Male Illinois 1 140 220 400 798 275 172 3 344 6 056 668 175 30 496 43 334
Male Indiana 2 485 943 1 888 723 1 300 506 126 464 211 814 1 773 538 177 182 363 094
Male Michigan 1 336 354 1 135 873 766 568 54 727 265 593 636 881 59 415 145 262

Female Wisconsin 260 848 180 063 22 526 0 6 541 259 973 16 817 12 644
Female Illinois 1 140 220 400 591 263 970 2 960 4 929 526 955 26 307 27 213
Female Indiana 2 485 943 1 887 766 1 285 007 120 771 191 246 1 504 553 142 310 333 373
Female Michigan 1 336 354 1 134 796 749 266 51 543 243 831 576 270 53 872 192 797

 
 
Table A.2.  Number of initial recruits.  

Area Ry=1,m
Wisconsin 171 250 
Illinois 600 127 
Indiana 3 405 594 
Michigan 2 118 778 

 



Table A.3.  Median and log-scale standard deviation for “recent” recruitment parameters 
by management area and for mixed-pool (Mixed) stock-recruitment models.  The 
parameters ( )αlog and β were drawn from a multivariate normal distribution with means 
andσ shown below, correlations are provided in Table A.4.  “Standard deviations” are 
approximately equal to coefficient of variation for ( )αlog , β , and εσ . 

Area ( )αlog  
ασ  β  βσ  

εσ  
εσ

σ  
Wisconsin 1.872 0.612 1.05E-05 0.920 1.715 0.18

Illinois 1.422 0.800 2.95E-06 1.209 1.327 0.18
Indiana 1.847 0.344 5.37E-07 0.638 0.792 0.18

Michigan 1.978 0.282 9.79E-07 0.493 0.696 0.18
   

Mixed 1.999 0.310 3.26E-07 0.553 0.773 0.18
 
 
Table A.4.  Correlation ofα and β for “recent” recruitment by management area and for 
mixed-pool (Mixed) spawning stocks.  Correlations between εσ and eitherα or β  were 
zero and are not shown.  These correlation parameters reflect that the “recent” 
recruitment parameters were drawn (see A.3) to be correlated among areas. 

Area βαρ ,  
Wisconsin 0.696 

Illinois 0.829 
Indiana 0.801 

Michigan 0.801 
  

Mixed 0.801 
 
 
Table A.5.  Median and log-scale standard deviation for “variable” recruitment 
parameters by management area and for mixed-pool (Mixed) stock-recruitment models.  
The parameters ( )αlog , β , and c were drawn from a multivariate normal distribution with 
means andσ shown below, correlations are provided in Table A.6.  “Standard deviations” 
are approximately equal to coefficient of variation for ( )αlog , β , c, and εσ . 

Area ( )αlog  
ασ  β  βσ  c  cσ  εσ  

εσ
σ  

Wisconsin 6.499 0.227 2.87E-05 0.306 4.472 0.331 1.653 0.18 
Illinois 5.124 0.229 9.79E-06 0.315 2.970 0.351 1.328 0.18 
Indiana 4.233 0.144 1.19E-06 0.22 2.084 0.266 0.679 0.18 

Michigan 3.902 0.13 1.81E-06 0.193 1.729 0.266 0.564 0.18 
         

Mixed 4.414 0.129 6.79E-07 0.193 2.127 0.242 0.632 0.18 
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Table A.6.  Correlation ofα ,β , and c for “variable” recruitment by management area 
and for mixed-pool (Mixed) spawning stocks.  Correlations between εσ  and other 
parameters were zero and are not shown.  These correlation parameters reflect that the 
“recent” recruitment parameters were drawn (see A.5) to be correlated among areas. 

Area βαρ ,  c,αρ  c,βρ  
Wisconsin 0.843 0.753 0.552 

Illinois 0.839 0.589 0.306 
Indiana 0.845 0.651 0.397 

Michigan 0.845 0.651 0.397 
    

Mixed 0.845 0.651 0.397 
 
 
Table A.7.  Correlation matrix for recruitment errors for annual recruitment variability.   

Area Wisconsin Illinois Indiana Michigan 
Wisconsin 1.000 0.885 0.846 0.924 

Illinois 0.885 1.000 0.935 0.806 
Indiana 0.846 0.935 1.000 0.811 

Michigan 0.924 0.806 0.811 1.000 
 
 
Table A.8.  Proportion of unfished spawning stock biomass (USSB), proportion of total 
recruits from mixed-pool recruitment that return to each management area (pm), and area-
specific cap used as a limit on maximum recruitment in an area for a given year (in 
millions, Rmax,m). 

Area Proportion 
USSB pm Rmax,m

Wisconsin 0.22 0.035 50 
Illinois 0.27 0.091 70 
Indiana 0.32 0.526 270 

Michigan 0.20 0.348 110 
 
 
Table A.9.  Transition matrix ( )T&  specifying post-recruitment migration among the four 
management areas.  Each cell represents the proportion of the population moving from an 
area (column) to another area (row).  Values along the diagonal represent the proportion 
of an area’s population that does not migrate. 

Area Wisconsin Illinois Indiana Michigan 
Wisconsin 0.92 0.10 0.03 0.01 

Illinois 0.05 0.80 0.10 0.05 
Indiana 0.02 0.08 0.80 0.10 

Michigan 0.01 0.02 0.08 0.84 
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Table A.10.  Mean and standard deviations for parameters for determining length at age 
two (

 14

)2,,, gmyL

m,0τ m,1τ m,ζσ

 by management area. 

Area    
Wisconsin 12.3 -0.12 0.5 

Illinois 15.6 -0.25 0.5 
Indiana 16.4 -0.16 0.5 

Michigan 12.6 -0.17 0.5 
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Table A.11.  Mean and standard deviation parameters for density-dependent von Bertalanffy growth model by sex and management 
area.  The parameters gm,,0γ , gm,,1γ ,  and were drawn from a multivariate normal distribution with means andgmb ,,1 σ shown below, 
correlations are provided in Table A.12.   

Sex Area gm,,0γ  gm,,0γ
σ  gm,,1γ  gm,,1γ

σ  gmb ,,1  gmb ,,1
σ  

Male Wisconsin -0.050 0.016 8.70 0.80 -0.323 0.06
Male Illinois -0.028 0.007 8.75 0.80 -0.323 0.05
Male Indiana -0.001 0.0002 3.35 0.30 -0.113 0.02
Male Michigan -0.004 0.001 6.30 0.60 -0.274 0.04

Female Wisconsin -0.045 0.015 11.40 1.05 -0.336 0.04
Female Illinois -0.030 0.008 11.60 1.10 -0.387 0.05
Female Indiana -0.004 0.001 6.30 0.60 -0.181 0.03
Female Michigan -0.008 0.002 6.45 0.60 -0.173 0.03

 

 



Table A.12.  Correlation matrices for parameter values for a density-dependent von 
Bertalanffy growth model by management area and sex.  M = males, F = females. 
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0Area  γ M 0γ F 1γ M 1γ F b1M b1F 
Wisconsin 0γ M 1.000 0.062 -0.583 -0.031 0.302 0.003

 0γ F 0.062 1.000 -0.006 -0.680 -0.022 0.253
 1γ M -0.583 -0.006 1.000 0.042 -0.909 -0.057
 1γ F -0.031 -0.680 0.042 1.000 -0.038 -0.797
 b1M 0.302 -0.022 -0.909 -0.038 1.000 0.069
 b1F 0.003 0.253 -0.057 -0.797 0.069 1.000
     

Illinois 0γ M 1.000 0.007 -0.489 -0.026 0.297 0.029
 0γ F 0.007 1.000 -0.022 -0.602 0.022 0.378
 1γ M -0.489 -0.022 1.000 0.071 -0.964 -0.077
 1γ F -0.026 -0.602 0.071 1.000 -0.072 -0.950
 b1M 0.297 0.022 -0.964 -0.072 1.000 0.079
 b1F 0.029 0.378 -0.077 -0.950 0.079 1.000
     

Indiana 0γ M 1.000 -0.019 -0.685 0.001 -0.060 0.020
 0γ F -0.019 1.000 0.018 -0.797 -0.008 0.057
 1γ M -0.685 0.018 1.000 0.006 -0.652 -0.030
 1γ F 0.001 -0.797 0.006 1.000 -0.008 -0.600
 b1M -0.060 -0.008 -0.652 -0.008 1.000 0.022
 b1F 0.020 0.057 -0.030 -0.600 0.022 1.000
     

Michigan 0γ M 1.000 0.011 -0.690 -0.008 -0.086 -0.005
 0γ F 0.011 1.000 -0.016 -0.778 0.009 -0.198
 1γ M -0.690 -0.016 1.000 0.026 -0.640 -0.017
 1γ F -0.008 -0.778 0.026 1.000 -0.026 -0.424
 b1M -0.086 0.009 -0.640 -0.026 1.000 0.029
 b1F -0.005 -0.198 -0.017 -0.424 0.029 1.000

 
 
Table A.13.  Parameter values for coefficient of variation for length at age (CVa) by sex.  

Sex    Age     
 2 3 4 5 6 7 8 9+ 

Males 0.23 0.18 0.14 0.12 0.12 0.12 0.12 0.12 
Females 0.25 0.2 0.15 0.12 0.12 0.12 0.12 0.12 
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Table A.14.  Starting values for mean length (Ly=0,m,g,a) at age by management area and sex. 
Sex Area    Age     

  2 3 4 5 6 7 8 9+ 
Male Wisconsin 12.00 17.08 21.52 23.62 25.08 26.21 26.95 27.26 
Male Illinois 12.73 15.38 17.28 18.61 20.34 22.73 24.51 25.72 
Male Indiana 13.60 15.10 16.40 17.60 18.60 19.60 20.50 21.30 
Male Michigan 11.20 14.50 16.80 18.40 19.60 20.80 21.60 22.00 

Female Wisconsin 12.00 19.52 24.96 27.55 29.59 31.30 32.18 32.49 
Female Illinois 12.73 19.12 23.15 25.84 27.91 29.32 30.89 32.21 
Female Indiana 13.60 17.50 20.70 23.20 25.30 27.00 28.40 29.60 
Female Michigan 11.20 15.80 19.50 22.50 25.10 27.80 30.10 31.20 

 
 
Table A.15.  Parameters for calculating mass at length ( )lW  and maturity at length . ( )lMat

Parameter value 
( )a&log  -12.68 

b 3.41 
m1 1.26 
m2 14.08 

 
 
Table A.16.  Standard deviation and autocorrelation coefficient for either assessment error or recreational fishery implementation 
error.   

 σ  ρ  
Assessment error (φ ) 0.22 0.7 

Implementation error (ς) 0.08 0.0 

 

 



Section 2: Implementation of the model to explore source-sink dynamics 
 

The source-sink model (Wilberg et al., in press) used the “mixed” version of the 
stochastic Ricker model for stock-recruitment dynamics as described in Section 1 
(equation T.2.3).  However, basin-wide recruitment was produced from spawning stock 
biomass (SSB) of a single management area for the various source-sink scenarios.  The 
Ricker parameters for the “recent” recruitment hypothesis were based on analysis of a 
recruitment and SSB time series from 1993-2002, whereas parameters for the variable 
recruitment hypothesis were based on analysis of a time-series for 1986-2002, where 
each year was assigned to one of the two regimes (see Section 3).  Parameters were 
estimated by fitting models of total estimated recruitment in southern Lake Michigan to 
SSB estimates for each management area.  Recruitment and SSB were estimated using 
updated versions of models in Wilberg et al. (2005) for Illinois and Wisconsin and 
similar unpublished models for Indiana and Michigan.  Parameter uncertainty was 
estimated on a log-scale by asymptotic standard errors and correlations obtained from 
regression.  In the simulation models, the log-scale stock recruitment parameters used in 
individual simulations were then drawn from a multivariate normal distribution with 
medians and standard deviations (B.1 and B.2), and correlations (B.4 and B.5) for the 
variable and recent stock recruitment models, respectively. 
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Appendix B.  Specified input values needed for source-sink simulations.  These are 
parameters used in Table 2 that were constant over simulations or the mean or median 
(indicated with a “bar” e.g., β ), standard deviations, and correlations needed to define 
the distribution for parameters that were drawn randomly and varied among simulations 
or over time.   

 
Table B.1.  Median parameter values and log-scale standard deviations for the variable 
stock recruitment model. 

Management 
area 

m)log(α  σα,m  
mβ  σβ,m  mc  σc,m  

m,εσ  m,εσ
σ  

Illinois 8.248 0.07 2.06E-05 0.16 2.509 0.22 0.619 0.18
Indiana 6.619 0.09 7.21E-06 0.22 1.954 0.27 0.670 0.18
Michigan 5.053 0.11 1.27E-06 0.19 2.117 0.24 0.631 0.18
Wisconsin 5.529 0.10 2.02E-06 0.19 2.117 0.24 0.631 0.18

 
 
Table B2.  Median parameter values and log-scale standard deviations for the recent 
stock recruitment model. 

Management 
area 

m)log(α  σα,m mβ  σβ,m m,εσ  
m,εσ

σ  

Illinois 5.697 0.10 1.02E-05 0.49 0.878 0.18 
Indiana 4.349 0.15 3.58E-06 0.57 0.756 0.18 
Michigan 2.612 0.24 6.04E-07 0.55 0.771 0.18 
Wisconsin 3.096 0.20 9.76E-07 0.55 0.771 0.18 

 
 

Table B3.  Correlation matrices for parameters in variable model.  Correlations between 
σ and α, β, and c were zero and are not shown. 

Management 
area 

ρα,β ρα,c ρ β,c

Illinois -0.84 -0.75 0.55 
Indiana -0.84 -0.59 0.31 
Michigan -0.85 -0.65 0.40 
Wisconsin -0.85 -0.65 0.40 

 
 
Table B4.  Correlation of α and β parameters in recent model.  Correlations between σ 
and α and β were zero and are not shown. 

Management 
area 

ρα,β

Illinois -0.70
Indiana -0.83
Michigan -0.80
Wisconsin -0.80
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Section 3.  Estimating stock-recruitment parameters for YPDA model 
One of the more challenging parts of the Lake Michigan yellow perch decision 

analysis (YPDA) project was the estimation of stock-recruitment parameters for the 
model.  This section outlines the methods used to estimate these parameters. 
Stock and Recruitment Time Series 

Stock (as spawning stock biomass [SSB]) and recruitment time series were 
estimated from 1986-2005 for Wisconsin, 1986-2004 for Illinois, and 1996-2004 for 
Indiana and Michigan waters of southern Lake Michigan (Figures 1 and 2) using updated 
versions of the Wilberg et al. (2005) assessment models for Wisconsin and Illinois and 
newly developed assessment models (following similar methods to Wilberg et al. 2005) 
for Indiana and Michigan.  There was a large degree of correspondence between the 
recruitment time series among states (Figure 1).  Therefore, synthetic estimates of 
recruitment for Indiana and Michigan were produced for 1986-1995 using linear 
relationships between annual recruitment in Michigan and Indiana versus average annual 
recruit for Wisconsin and Illinois based on recruitment estimates available from the 
assessment models during 1996-2004 (Figure 3).  

Estimated time series of SSB were quite similar for Wisconsin and Illinois and for 
Indiana and Michigan.  However, patterns between models with longer time series and 
shorter time series were quite different, with Indiana and Michigan showing an almost 
monotonous decline since 1996.  We believe that the Wisconsin and Illinois estimates are 
better estimates given the qualitative patterns in catches and perceptions by the managers 
during the past 20 years are matched by these estimates as well as the data used in the 
Wisconsin and Illinois models are, for the most part, more complete and more precise.  
Because we concluded that the overall pattern was wrong in the Indiana and Michigan 
time series, we took a different approach to estimating the SSB time series than we did 
for the recruitment time series.  To generate synthetic SSB time series for Michigan and 
Indiana, we rescaled the average SSB time series in Wisconsin and Illinois so that they 
had the same mean during 1996-2004 as the Michigan or Indiana model estimates (Figure 
4).     
Stock Recruitment Models 

We considered two alternative hypotheses with regard to how recruits mix and 
two with regard to future productivity, which led to four stock-recruitment models.  The 
mixing hypothesis was that each state’s SSB solely contributes recruits to that state’s 
waters.  In this hypothesis, each state’s waters are essentially closed for the purpose of 
stock-recruitment.  The alternative mixing hypothesis was that recruits from each of the 
four states mix in a common pool before settling out in each state.  The first productivity 
hypothesis stated that the system has fundamentally changed and will follow stock 
recruitment patterns since 1993 (i.e., “recent” recruitment hypothesis).  The alternative 
productivity hypothesis was that the system still retains the capacity to have large 
recruitment events (i.e., “variable” recruitment hypothesis).  When these two alternatives 
for mixing and productivity were crossed, this led to four stock recruitment models: 1) 
individual stocks by state with recruitment dynamics similar to 1993-2004, 2) individual 
stocks by state with recruitment dynamics that maintain the capacity to have high 
recruitment in the future, 3) recruitment mixing among states with recruitment dynamics 
similar to 1993-2004, and 4) recruitment mixing among states with the capacity for high 
recruitment in the future. 
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Individual State Models 
To estimate the parameters of the variable recruitment models, ANCOVAs were 

fitted to the data shown in Figures 5 and 7 to estimate the good and bad regime 
parameters of the variable recruitment hypothesis (Figure 8).  Specifically, the model was 

DcSSB
SSB

R
mmymrmr

my

my −−=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

−
,2,,

,2

, loglog βα , 

where R is recruitment and D is a dummy variable that describes whether the year is in 
the good or bad regime, and α, β , and c were estimated parameters.  Years were 
classified as good or bad by eye, by looking at the plots in figure 5 and separating years 
into good or bad years.  Good or bad classifications for a given year were the same across 
states, so a given year was either good across all states or bad across all states.   

To estimate the parameters of the models that presumed that recruitment 
dynamics would remain consistent with the lower productivity seen during 1993-2002, 
simple Ricker models (as above without the dummy variable) were fitted to the data 
shown in Figures 6 and 7.  The models predicted quite different responses in recruitment 
to changes in SSB (Figure 8).  The good regime allowed for substantially higher 
productivity than the poor regime, and dynamics during the last decade allowed for 
somewhat higher recruitment than the bad regime.  
Individual state – recent recruitment 

Parameters for each state were drawn each simulation from a multivariate normal 
distribution with variances and covariances equal to the asymptotic variance-covariance 
matrix and covariances among states were assumed to be zero.  Each year a correlated 
(among areas) lognormal error was applied to the median recruitment.  Correlation 
coefficients (r) among recruitment residuals of states (during 1996-2004) ranged from 
0.81 to 0.93.   
Individual state – variable recruitment 

Parameters for each state were drawn for each simulation from a multivariate 
normal distribution with variances and covariances equal to the asymptotic variance-
covariance matrix.  Covariances among states are assumed to be zero.  The regime of a 
given year was a random Bernoulli variable, where the probability of a good year is p.  
The parameter p was randomly drawn at the beginning of each simulation from a uniform 
distribution (0.1-0.25).  This distribution was based on an analysis of z-transformed 
relative recruitment from the 1950s to the present, and the proportion of years with 
“above average” recruitment was about 0.2.   
Mixed pool – recent recruitment 

Parameters for each state were drawn for each simulation from a multivariate 
normal distribution with variances and covariances equal to the asymptotic variance-
covariance matrix.  Total SSB across states was calculated and total recruitment was 
predicted.  The predicted recruitment was multiplied by a lognormal error, and the 
recruits are reapportioned to the four states.  The proportion of total recruits that return to 
a state was random (calculated from a random sample from a multinomial distribution 
with a sample size of 100) with means based on the proportion of total 
estimated/synthetic recruits that were found in that state’s waters during 1986-2004.  
Mixed pool – variable recruitment 

Parameters for each state were drawn each simulation from a multivariate normal 
distribution with variances and covariances equal to the asymptotic variance-covariance 
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matrix.  Total SSB across states was calculated and recruitment was predicted.   The 
regime of a given year is a random Bernoulli variable as above.  The predicted 
recruitment was multiplied by a lognormal error, and the recruits were reapportioned to 
the four states based on a proportion that return to each state as above. 
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Figure 1.  Estimated recruitment time series by state for yellow perch in southern Lake 
Michigan. 
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Figure 2.  Estimated spawning stock biomass (kg) of yellow perch by state in southern 
Lake Michigan. 
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Figure 3.  Observed and synthesized time series of recruitment for yellow perch in 
southern Lake Michigan by state.  Values for Indiana and Michigan during 1986-1995 
were synthesized using linear relationships between recruitment in each state and average 
recruitment in Illinois and Wisconsin. 
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Figure 4.  Observed and synthesized estimates of spawning stock biomass (SSB) for 
yellow perch in southern Lake Michigan.  Values for Indiana and Michigan were 
synthesized by rescaling the average SSB time series for Illinois and Wisconsin so it has 
the same mean as the Indiana or Michigan SSB time series. 
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Figure 5.  Plots of log(recruits/kg SSB) for yellow perch in southern Lake Michigan for 
each state.  Ellipses (fit by eye) on the graphs indicate what might be separate regimes for 
recruitment.  
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Figure 6.  Plots of log(recruits/kg SSB) for yellow perch in southern Lake Michigan for 
each state for the 1993-2002 cohorts. 
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Figure 7.  Plots of log(recruits/kg SSB) for yellow perch in southern Lake Michigan for 
the Mixed stock model for all cohorts (1986-2002) and just the 1993-2002 cohorts. 
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Figure 8.  Estimated stock-recruitment curves for the good regime, bad regime, and 
during 1993-2002. 
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