2012 RESEARCH REPORT

SAGINAW VALLEY

RESEARCH \& EXTENSION CENTER and RELATED BEAN - BEET RESEARCH

MICHIGAN STATE UNIVERSITY

AgBioRESEARCH

TABLE OF CONTENTS

Introduction and Weather Information for 2012 1
Western Bean Cutworm Biology and Life History 7
Michigan Sugar Company Research 9
USDA-ARS Sugarbeet Activities 13
Efficacy of application of foliar fungicides for control of Cercospora leaf spot in sugarbeet 18
Control of Rhizoctonia crown and root rot in sugarbeet with fungicides 22
Dry Bean Breeding Yield Trials 24
Dry Bean Row Width and Population Trials 73
White Mold Fungicide Trials in Beans 78
Herbicide-resistant weed management strategies in Roundup Ready sugarbeet 79
Tolerance of replanted sugarbeet to Warrant 80
Volunteer corn effects on Roundup Ready sugarbeet yield and quality planted in wide- and narrow-rows 81
Control of volunteer Roundup Ready corn in Roundup Ready sugarbeet 82
Evaluation of preharvest desiccants in dry edible beans 83

SAGINAW VALLEY RESEARCH AND EXTENSION CENTER REPORT

James D. Kelly, Coordinator
Paul E. Horny, Farm Manager
Dennis Fleischmann, Technician

INTRODUCTION

The Michigan sugar beet grower cooperative, Michigan Sugar Company, and the Michigan dry bean growers and industry represented by the Michigan Bean Commission and Michigan Bean Shippers Association, donated the proceeds of the 120 acre Saginaw Valley Bean and Beet Research Farm, located in Saginaw County for 38 years, to Michigan State University in 2009. The Michigan State University Office of Land Management then purchased and operates a 320 acre farm near Richville Michigan in Denmark Township. The site is being established as an AgBioResearch research center. Shop, offices and machinery storage have been built, infrastructure improvements including electricity, phone, wireless internet, irrigation and municipal water were established. Future infrastructure plans include fiber optic internet connection and natural gas hookup. The site is located on the southeast corner of Reese and Krueger Roads, address of 3775 South Reese Road, Frankenmuth, Michigan 48734.

Field research was initiated in 2009 and the 2012 season was the Fourth season of research at the site. This research report is primarily a compilation of research conducted at the site in 2012. Most of the work represents one year's results, and even though multi-season results are included, this work should be considered a progress report.

Soil - The soil type on the farm is classified as a Tappan-Londo loam, these are very similar soil types separated by subsoil drainage classifications, the Tappan not being as naturally well drained as the Londo. The site was soil tested in spring 2009 at 2.5 acre increments. The soil pH averages 7.9, soil test phosphorus averages 56 pounds P/acre, soil test Potassium averages 294 pounds K/acre.

Weather - The monthly rainfall for 2012 collected with the automated rain gauge is given in Table 1. The monthly totals are given at the bottom of the table. June and July were dry, with beneficial rain coming in late July. Wheat yielded 90 bushels/acre, dry beans would not flower well in the dry and the heat and flowered after the July rain and were delayed in maturity but still yielded 20-30 cwt/acre. Earlier planted corn pollinated during the dry hot spell yielded 20-40 bushels less than the 170 bushels/acre later planted corn. Soybean and sugarbeet yields were very good at 65 bushels/acre and 30 tons/acre, they did well with the early and late rains. The rainfall total of 25.57 was lower than average. Maximum and minimum daily temperatures along with growing degree days (base 50) are given in Table 2. The 2012 season was warm with 12 days above 90 degrees and 42 days above 85 degrees including one 86 degree day in March which lead to the demise of the local fruit crop. There was 2637 growing degree days for 2012 which was above average.

MONTHLY PRECIPITATION, SAGINAWVAШEY RESEARCHFARM

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC TOTAL

1980	1.00	0.71	1.84	3.91	2.60	4.04	5.90	2.11	4.61	3.26	0.94	2.44	33.36
1981	0.29	1.73	0.53	3.43	3.52	3.09	2.41	3.83	9.09	2.74	2.21	0.68	33.56
1982	2.37	0.46	2.26	1.27	3.32	3.09	2.65	2.55	3.02	0.76	4.01	3.26	29.02
1983	0.89	0.90	3.29	4.55	6.15	3.55	1.91	2.50	5.11	2.95	3.06	2.00	36.86
1984	0.56	0.73	3.18	3.20	3.66	3.94	2.42	3.75	3.29	3.05	2.67	2.18	32.63
1985	1.85	2.12	4.08	3.96	2.30	1.87	2.38	7.02	4.38	3.08	4.66	1.05	38.75
1986	1.34	2.24	1.62	1.87	3.10	3.48	1.38	2.76	18.05	2.64	0.75	1.38	40.61
1987	1.11	0.82	1.03	2.03	0.67	4.11	1.35	3.92	5.03	1.88	2.13	2.63	26.71
1988	1.04	1.01	1.70	3.26	0.56	0.59	3.45	3.52	2.46	3.25	4.36	1.08	26.28
1989	1.09	0.34	1.40	2.05	5.03	6.25	1.06	2.92	4.43	1.72	3.24	0.48	30.01
1990	1.23	1.21	1.17	1.54	2.81	2.07	2.53	6.94	3.74	5.87	4.51	1.45	35.12
1991	0.85	0.60	3.68	6.61	3.71	2.66	4.53	2.61	1.50	3.52	2.04	1.24	31.58
1992	1.20	1.65	1.31	4.56	1.10	2.10	4.33	2.92	4.08	2.54	4.50	2.10	32.39
1993	2.72	0.47	0.87	4.08	2.76	3.03	2.46	4.62	4.00	3.70	1.99	0.53	31.23
1994	0.55	0.66	0.91	3.58	2.04	6.99	2.57	4.44	2.19	2.24	4.40	1.03	31.60
1995	1.67	0.35	1.38	2.72	1.44	1.96	1.29	5.00	1.33	2.39	4.05	0.79	24.37
1996	0.83	0.94	0.49	3.18	5.47	5.65	2.32	1.53	3.52	3.31	1.37	2.21	30.82
1997	1.51	4.25	1.32	1.38	3.00	0.69	2.44	3.61	3.46	1.31	1.03	0.36	24.36
1998	2.66	2.05	3.17	2.14	1.87	1.56	1.02	2.01	1.41	3.18	1.79	1.32	24.18
1999	2.75	0.41	0.62	5.01	2.33	3.07	5.02	3.01	2.52	1.12	1.04	1.90	28.80
2000	0.57	1.35	0.89	2.94	5.34	2.65	3.03	3.69	3.27	0.90	2.07	1.57	28.27
2001	0.33	3.16	0.11	2.38	4.42	2.45	0.53	3.52	4.34	4.90	1.76	1.61	29.51
2002	1.02	1.49	2.47	3.49	4.46	3.15	3.00	4.50	0.50	1.87	1.19	0.97	28.11
2003	0.27	0.21	1.66	0.36	4.19	2.04	2.49	1.33	1.99	1.09	5.35	1.20	22.18
2004	1.09	0.55	2.50	1.31	7.34	2.70	2.01	2.32	0.66	2.41	3.44	1.51	27.84
2005	2.90	0.71	0.62	1.32	1.74	4.97	3.20	0.72	0.72	1.30	3.83	1.49	23.52
2006	1.91	1.57	1.59	1.87	4.17	2.03	5.72	2.61	2.53	3.77	3.05	2.81	33.63
2007	1.11	0.35	1.27	3.02	$2 . .20$	1.06	2.59	4.80	2.64	2.86	0.89	1.93	22.52
2008	1.76	2.59	1.23	1.99	1.13	3.88	3.94	2.10	5.61	1.70	1.36	1.21	28.50
*2009	0.01	2.12	1.84	4.69	1.23	4.81	2.73	3.48	0.82	3.61	0.47	1.88	27.69
2010	0.14	0.20	0.40	2.15	3.36	2.71	0.89	1.27	3.11	1.94	1.97	0.42	18.56
2011	0.48	0.24	1.82	4.96	3.86	1.51	1.34	2.98	2.28	2.85	2.74	1.42	26.48
2012	1.86	0.76	1.41	1.19	3.92	1.10	3.62	4.03	1.60	4.29	0.38	1.41	25.57
AVG.	118	116	158	2.87	2.99	2.96	2.57	3.18	3.51	2.54	2.51	146	28.51

[^0]PRECIPITATION - SAGINAWVA山FY RESEARCH \& EXIENSION CENIER-2012

Day:	JAN	FB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	0.6					0.68						
2			0.36		0.05	0.20		0.01				0.36
3					1.48		0.58			0.02		
4					0.05			0.01	0.39	0.21		0.01
5							0.03	0.36				
6												
7					0.07				0.34			0.06
8			0.13						0.13			0.21
9					0.01			0.71				0.01
10								2.30		0.13		0.06
11								0.09		0.10		0.01
12	0.28		0.63		0.33	0.02					0.32	
13			0.01		0.02		0.03	0.01	0.10	0.40		
14		0.01					0.06	0.02	0.29	0.77		
15		0.07		0.28	0.16							0.08
16	0.06	0.16		0.24	0.08		0.14	0.03				0.03
17	0.24									0.02		
18						0.05	0.49		0.07	0.35		
19		0.03		0.02				0.4		0.06		
20				0.44					0.20	0.37		0.50
21	0.06	0.03			0.02	0.01			0.08			0.01
22						0.14				0.12	0.04	0.02
23	0.32	0.03	0.01				0.05			1.11		0.01
24		0.23	0.02									
25							0.03					
26	0.12				0.08		1.51	0.04		0.07		
27	0.16				1.54		0.47	0.05				0.04
28	0.02											
29		0.20			0.01							
30			0.25	0.21						0.52	0.02	
31					0.02		0.23			0.04		
TOTAL	1.86	0.76	1.41	1.19	3.92	1.10	3.62	4.03	1.60	4.29	0.38	1.41

Rainfall is measured in inches
2012 YEAR END TOTAL: 25.57 INCHES

DAY	JANUARY		FBRUARY	MARCH		APRIL		MAY		JUNE		
	MAX	MIN										
$\mathbf{1}$	44	29	47	33	38	32	50	36	55	45	53	46
$\mathbf{2}$	29	18	36	28	46	33	56	27	81	46	67	45
$\mathbf{3}$	21	14	36	28	39	24	59	34	85	54	74	52
$\mathbf{4}$	34	19	41	24	27	19	57	31	66	49	69	46
$\mathbf{5}$	38	24	38	22	28	13	46	28	60	44	70	48
$\mathbf{6}$	52	36	44	28	53	25	54	22	69	41	76	45
$\mathbf{7}$	42	30	33	20	65	47	64	26	58	51	79	50
$\mathbf{8}$	36	24	33	15	60	28	59	43	71	51	82	52
$\mathbf{9}$	39	25	39	22	34	18	59	31	62	45	87	65
$\mathbf{1 0}$	44	25	31	12	48	17	45	33	65	36	90	60
$\mathbf{1 1}$	49	27	19	5	66	40	55	32	74	40	80	63
$\mathbf{1 2}$	37	31	28	15	62	40	56	25	63	55	75	54
$\mathbf{1 3}$	31	18	34	18	61	40	64	28	71	47	71	43
$\mathbf{1 4}$	18	0	32	23	75	33	68	44	76	43	80	42
$\mathbf{1 5}$	24	-1	41	31	76	56	73	54	82	48	87	51
$\mathbf{1 6}$	39	18	39	31	72	42	68	40	63	45	87	61
$\mathbf{1 7}$	36	20	41	30	79	52	51	34	66	36	81	63
$\mathbf{1 8}$	22	18	31	19	73	50	63	28	78	46	84	56
$\mathbf{1 9}$	26	4	29	11	79	49	65	42	87	49	92	76
$\mathbf{2 0}$	15	0	39	14	82	57	50	37	89	56	92	71
$\mathbf{2 1}$	26	0	37	27	86	55	47	31	72	56	88	65
$\mathbf{2 2}$	35	7	41	28	77	53	51	30	70	52	79	58
$\mathbf{2 3}$	47	31	38	24	66	48	56	37	77	42	81	54
$\mathbf{2 4}$	31	28	32	27	57	46	58	37	85	55	84	64
$\mathbf{2 5}$	30	27	30	19	68	41	62	31	82	61	72	53
$\mathbf{2 6}$	36	25	34	11	41	27	53	36	76	59	81	49
$\mathbf{2 7}$	38	31	38	20	54	21	54	26	75	56	88	53
$\mathbf{2 8}$	33	26	39	14	59	38	49	30	89	64	96	66
$\mathbf{2 9}$	28	20	37	30	39	29	64	22	80	58	92	65
$\mathbf{3 0}$	33	14			35	24	52	41	66	51	93	64
$\mathbf{3 1}$	54	24			43	31			61	47		

Growing Degree Days

Base 50 (max + min / 2 - 50)

	Apr	May	Jun	Jul	Aug	Sep	Oct	Total
2009	50.5	190.0	432.0	458.5	517.5	345.0	27.0	2020.5
2010	89.0	385.0	528.5	729.0	697.5	311.5	95.0	2835.5
2011	38.0	273.0	515.0	758.5	576.5	308.5	122.5	2592.0
2012	28.0	341.0	555.5	756.0	552.0	295.0	109.50	2637.0

MAXIMUM-MNIMUM AIR TEMPERATURES(F)

SAGINAWVAШEY RESEARCH \& EXIENSION CENIER - 2012 cont.

	JULY		AUGUST		SEPTEMBER		OCTOBER		NOVEMBER		DECEMBER	
DAY	MAX	MIN										
1	89	62	82	58	79	54	66	35	48	37	55	29
2	95	59	81	61	83	55	69	49	40	33	55	43
3	90	67	91	66	86	54	61	54	37	26	61	36
4	96	71	88	65	81	64	76	57	38	24	62	35
5	91	71	82	58	82	61	61	45	39	24	37	24
6	96	71	79	51	81	55	51	33	42	30	37	24
7	83	66	84	55	73	56	50	32	47	24	43	36
8	80	59	81	58	70	52	56	28	45	21	37	30
9	85	57	68	59	69	44	63	35	51	31	33	29
10	80	53	63	58	72	43	55	32	55	42	32	25
11	84	53	69	58	79	47	62	29	68	54	32	21
12	88	55	77	56	83	56	51	28	62	28	42	29
13	93	58	73	59	81	56	58	29	37	25	45	29
14	91	63	77	60	70	48	69	54	37	20	43	28
15	91	69	78	57	71	43	54	44	44	25	41	28
16	93	64	78	59	77	49	58	32	49	23	49	39
17	99	71	73	49	77	50	73	49	53	27	41	35
18	82	69	73	45	63	40	58	46	53	31	40	30
19	70	63	75	48	65	34	55	43	54	27	40	29
20	77	59	73	49	68	48	54	41	50	33	44	30
21	86	54	76	48	67	45	60	36	56	31	39	25
22	90	65	78	52	59	41	71	40	62	41	61	27
23	94	71	84	52	57	36	59	54	53	30	61	18
24	80	59	86	59	63	35	76	56	32	27	27	19
25	89	54	89	59	74	50	76	57	32	24	30	23
26	84	66	89	63	66	44	68	40	31	25	28	26
27	76	65	84	63	65	37	52	30	33	17	28	10
28	78	61	76	55	68	43	47	32	38	21	27	5
29	82	55	78	49	69	41	43	38	46	22	28	15
30	86	59	83	54	63	38	39	33	36	30	28	14
31	82	63	90	63			42	34			33	21

GROWNG DEGREE DAYS-SAGINAWVAШEY RESEARCH FARM

Base 50 (max + min / 2-50)

	APRIL	MAY	JUNE	JULY	AUG	SEPT	OCT	TOTAL
1976	113.00	151.50	537.50	596.00	500.50	276.50	72.00	2247.00
1977	140.50	398.00	389.00	675.00	485.00	344.00	43.00	2474.50
1978	4.00	316.50	474.50	571.50	588.50	393.50	75.00	2423.50
1979	47.50	228.50	458.50	577.50	479.00	330.00	116.00	2237.00
1980	34.00	281.50	369.00	617.50	606.00	317.50	33.50	2259.00
1981	55.50	187.00	491.00	579.50	312.00	265.00	13.50	1903.50
1982	54.50	428.50	365.50	626.00	476.00	298.00	156.00	2404.50
1983	16.00	118.50	491.00	716.00	645.00	369.50	97.00	2453.00
1984	67.50	164.50	506.00	558.50	627.00	282.00	114.50	2320.00
1985	183.50	306.00	388.00	603.50	523.00	394.50	100.00	2498.50
1986	124.50	310.00	435.00	664.00	459.50	370.00	96.50	2459.50
1987	84.00	336.50	566.50	725.50	537.50	334.00	19.50	2603.50
1988	35.50	290.50	544.50	739.50	667.50	283.00	48.00	2608.50
1989	21.50	202.00	456.50	648.00	535.00	315.00	167.00	2345.00
1990	165.50	146.00	493.50	587.50	553.50	332.50	100.50	2379.00
1991	144.00	423.50	541.00	641.00	567.50	289.50	114.00	2720.50
1992	56.00	241.50	367.00	446.50	403.50	257.50	41.50	1813.50
1993	23.50	208.00	430.00	642.00	613.50	184.50	25.00	2126.50
1994	95.50	227.50	526.50	613.50	501.50	380.00	115.00	2459.50
1995	3.00	221.00	536.00	698.50	745.00	225.00	125.50	2554.00
1996	41.00	157.00	486.00	572.00	611.00	357.50	91.50	2316.00
1997	27.00	48.00	534.00	596.50	443.00	299.50	134.50	2082.50
1998	46.00	267.00	505.50	623.50	648.00	456.00	114.00	2660.00
1999	49.50	299.00	578.50	684.50	500.00	339.00	67.50	2518.00
2000	17.00	284.00	474.50	509.50	544.50	289.00	157.00	2275.50
2001	78.00	289.50	504.00	649.50	654.00	282.00	114.00	257100
2002	123.00	141.50	535.00	710.00	575.00	443.00	99.00	2626.50
2003	66.50	147.50	410.00	606.00	608.00	312.50	82.00	2232.50
2004	89.00	240.50	429.50	561.00	450.50	421.50	69.00	226100
2005	58.00	145.00	623.00	647.50	611.50	429.00	130.00	2644.00
2006	79.00	283.50	470.50	661.00	555.50	260.00	38.50	2348.00
2007	53.50	277.00	534.00	564.00	594.00	393.00	231.00	2646.50
2008	110.00	116.50	512.00	620.00	532.50	343.00	56.50	2290.50
*2009	50.50	190.00	432.00	458.50	517.50	345.00	27.00	2020.50
2010	89.00	368.50	528.50	729.00	697.50	311.50	95.00	2819.00
2011	38.00	273.00	515.00	758.50	576.50	308.50	122.50	2592.00
2012	28.00	341.00	555.50	756.00	552.00	295.00	109.50	2637.00
AVERAGE	67.89	244.74	486.32	627.95	553.97	327.74	92.20	2400.82

[^1]Saginaw Valley Research Farm Report, 2012 Field season
PI: Chris DiFonzo, Department of Entomology

Western bean cutworm biology and life history

How do different types of Bt compare in ear damage under low WBC infestation, and does spraying a Bt hybrid improve yield?

- There was no difference among Bt hybrids in WBC damage in 2012, because WBC populations were so low. Sprayed plots yielded more.

From previous efficacy trials, we knew that WBC control differed by type of Bt corn. In 2012, we planted three different hybrids: Genuity Double Pro with Cry1A.105/ Cry2Ab2, Optimum Acremax with Cry1F, and Agrisure Viptera with the VIP protein. Cry1A.105/Cry2Ab2 has little or no impact on WBC, Cry1F gives partial control, and VIP provides excellent control. Two studies were planted, one under high WBC pressure (Montcalm) and another in an area with no history of WBC infestation (Saginaw Farm). I report the Saginaw results here. Plots were 8-rows x 30 feet; four rows of each plot were sprayed three times with Asana or Warrior to provide an insect-free check. Ear damage and yield were assessed at the end of the season, separately for the sprayed and untreated rows of each plot. Yield comparisons were made between sprayed versus unsprayed rows in each hybrid. Yield was not compared across hybrids because they were from different companies and had different base genetics.

As expected, no WBC feeding was found in Saginaw. However, plots sprayed three times had higher yield than unsprayed plots, significantly so (12 bushels) with Acremax. This increase was surprising, as there were no obvious pest populations present during the season. Despite the yield increase, assuming the cost of three sprays, spraying would not have been profitable except in the AcreMax treatment. We do not know if a single application would have achieved the same results.

	Genuity	Acremax	Viptera
Bt toxin(s)	Cry1A.105, Cry2Ab2	Cry1F	VIP protein
Bt efficacy	poor/none	good	excellent
Sprayed with Warrior	156 bu	198 bu	140 bu
Not treated	149 bu	186 bu	133 bu
Difference w/ spray	+7 bu ns	+12 bu	+7 bu ns

Do WBC larvae overwinter deeper, and thus better, in sandy soils?

- Answer: It appears so, but it is difficult to prove.

In July 2011, we filled long (18-inch deep) buckets with a McBride/Isabella sandy loam soil from Montcalm County (a center of WBC infestation), and a heavier Tappan Londo loam soil from the Saginaw Valley Farm (where WBC moths and damage are uncommon). The premarked 20 -inch pots were sunk into the ground in July using a tractor-mounted auger. Pots were in place all summer to develop a soil profile. Pots were infested with 10 larvae each in

September 2011, and dug up in the winter of 2012 to recover WBC prepupae. A greater proportion of prepupae were recovered deeper in the sandy loam soil, the deepest at 16 inches. However, overall recovery was low in winter 2012, we speculate because the soil profile never froze. The insects likely used up their fat stores well before the spring, and died in mid-winter. We reset buckets in July 2012 using the same soil types and infested them in August. These buckets are still in the field, and we will dig them up in early 2013.

	\% of prepupae recovered, by depth				
Soil source	$1-4$ inches	$5-8$ inches	$9-12$ inches	$13-16$ inches	$17-20$ inches
Saginaw	0%	39%	52%	9%	0%
Montcalm	3%	12%	64%	21%	0%

How long does pyrethroid residue last on dry beans to kill WBC larvae?

- Answer: At least 14 days

For the last three seasons, MSU recommended that dry bean growers spray fields with a pyrethroid within two weeks of peak trap catch. Growers asked how long pyrethroid spray residues were effective. In 2012, we sprayed blocks of dry bean plants with Warrior 1, 5, 7, or 14 days prior to a feeding trial. Before spraying, exposed leaves were marked to ensure collecting plant material with Warrior residue. These leaves were collected on the day of the study, leaf disks cut out, and disks put into cups in the lab. A small WBC larva ($2^{\text {nd }}$ or $3^{\text {rd }}$ instar) was placed in each cup to crawl over or feed on the leaf material, and survival was recorded at 48 hours. The study was repeated a week later with new leaves. Warrior residue on leaves killed 100% of larvae even 14 days after spraying. Given good spray coverage, there is at least a 2 week control (kill) window between treatment and egg hatch for WBC on dry beans.

Treatment	$\%$ dead after 48 hrs	
	Trial l	Trial 2
Not sprayed	6%	12%
1 Day after spray	100%	100%
5 Days after spray	100%	100%
7 Days after spray	81%	100%
14 Days after spray	100%	100%

Michigan Sugar Company Research

Official Variety Trial: This trial was planted at eight locations and six were usable for the variety approval process.
Purpose: To evaluate the production differences in varieties. Tons per acre, sugar content, and purity are measured and used to figure Recoverable Sugar per Ton (RWST) and Sugar per Acre (RWSA).
Results: Results were good from the locations we used. The traits for tons per acre, sugar content and tolerance to diseases and pests vary between varieties. The Official Variety Trials and the nurseries evaluate these differences. The results from our trials provide the information needed to approve the best varieties to be sold and give the growers the information they need to select the best varieties for their farm.

Rhizoctonia Nursery: We planted two locations and both were usable giving good results.
Purpose: The Rhizoctonia nursery is conducted to evaluate resistance in the varieties. The test is inoculated. Knowledge of varietal differences is important to help the growers select the best varieties for their conditions.
Results: There are a few varieties containing a level of tolerance to Rhizoctonia and many that have very little or no tolerance to the disease.

Cercospora Leafspot Nursery:

This nursery was planted at four locations and two gave us good results.
Purpose: The Cercospora Leafspot nursery is conducted to evaluate resistance in the varieties. These are two row plots with a susceptible variety planted between plots which helps spread the disease evenly. The entire plot area is inoculated with Cercospora.
Results: The results of this nursery indicates which varieties have a level of resistance that is acceptable in our growing region. The most tolerant variety had a rating of 2.5 and the most susceptible variety had a rating of 5.2 on a scale of 0-9.

Official Variety Trials
Average of 6 Locations - 2012
Sorted by \$/Acre

Variety	\$/A	RWSA	RWST		Yield		Sugar		CJP	
			Actual	Rank	T/A	Rank	\%	Rank	\%	Rank
C-RR202	\$2,469	10614	293	1	36.2	5	19.5	6	95.5	12
B-12RR2N	\$2,428	10511	287	12	36.5	4	19.0	19	95.7	2
B-19RR1N	\$2,419	10441	283	21	36.8	3	18.8	24	95.6	5
C-RR824	\$2,396	10347	269	38	38.4	1	18.2	38	95.0	31
C-RR059	\$2,394	10353	290	6	35.7	11	19.4	8	95.2	23
B-18RR4N	\$2,390	10313	286	15	36.0	6	19.1	17	95.4	13
B-12RR40	\$2,362	10193	284	20	35.9	9	19.1	15	95.0	30
C-RR074NT	\$2,359	10161	285	18	35.6	12	19.2	14	95.1	28
SX-1228RR	\$2,341	10098	283	22	35.7	10	18.8	25	95.7	3
SX-1212RR	\$2,336	10159	281	25	36.0	8	18.7	26	95.6	7
B-12RR6N	\$2,333	10056	273	32	36.8	2	18.4	35	95.2	24
C-RR086	\$2,325	10009	290	7	34.6	16	19.4	9	95.2	25
B-17RR32	\$2,304	9944	276	30	36.0	7	18.6	27	94.9	33
C-RR288	\$2,268	9814	286	13	34.2	19	19.1	16	95.5	11
C-RR222NT	\$2,245	9688	289	9	33.5	22	19.3	11	95.1	26
SX-1291RR	\$2,243	9663	285	17	33.9	21	19.2	13	95.0	29
SX-1229RR	\$2,239	9675	285	19	33.9	20	18.9	21	95.6	4
M-116	\$2,234	9607	272	35	35.4	13	18.4	32	94.8	37
SX-1281RR	\$2,224	9607	280	26	34.3	18	18.9	22	94.9	36
HM-133RR	\$2,221	9586	292	3	32.8	29	19.6	1	94.9	34
HM-28RR	\$2,215	9581	277	29	34.4	17	18.5	29	95.4	14
HM-50RR	\$2,202	9490	291	5	32.7	31	19.5	3	94.9	32
HM-173RR	\$2,195	9468	273	33	34.7	14	18.5	31	94.8	39
SX-1226RR	\$2,193	9489	286	14	33.0	27	19.0	20	95.6	6
M-206	\$2,192	9467	287	11	32.9	28	19.4	10	94.8	38
SX-1213N RR	\$2,168	9364	269	39	34.7	15	18.1	40	95.4	18
C-RR219	\$2,158	9288	292	2	31.8	35	19.5	4	95.2	22
SX-1211N RR	\$2,148	9261	282	24	32.8	30	18.8	23	95.4	17
HM-131RR	\$2,142	9233	291	4	31.7	36	19.6	2	94.9	35
SX-1260RR	\$2,125	9187	275	31	33.4	24	18.4	33	95.3	21
B-10RR34	\$2,117	9159	286	16	32.0	34	19.1	18	95.4	15
HM-NT9403RR	\$2,080	8978	270	37	33.3	25	18.4	34	94.5	43
M-NT207	\$2,073	8956	268	41	33.5	23	18.3	36	94.3	44
M-NT208	\$2,064	8887	283	23	31.5	37	19.2	12	94.5	42
HM-NT9425RR	\$2,058	8841	289	8	30.7	42	19.5	5	94.7	40
B-12RR89	\$2,056	8871	273	34	32.6	32	18.3	37	95.3	20
HM-27RR	\$2,024	8785	269	40	32.4	33	18.0	41	95.5	9
SX-1215RR	\$2,021	8769	279	27	31.2	39	18.5	28	95.7	1
HM-9402RR	\$2,012	8667	288	10	30.1	43	19.5	7	94.7	41
SX-1227RR	\$1,987	8585	259	44	33.1	26	17.5	43	95.1	27
HM-9453RR	\$1,984	8587	278	28	30.8	41	18.5	30	95.5	10
HM-9447RR	\$1,979	8565	272	36	31.4	38	18.2	39	95.4	16
HM-9401RR	\$1,860	8038	259	43	31.0	40	17.4	44	95.3	19
HM-9400RR	\$1,782	7737	265	42	28.9	44	17.8	42	95.6	8
Average	2190	9457	280		33.7		18.8		95.2	
LSD 5\%	158.8	681.1	7.1		2.0		0.4		0.3	
CV \%	6.4	6.4	2.3		5.2		2.1		0.3	

\$IA: Gross dollars per acre assuming $\$ 65$ payment
Bold: Results are not statistically different from top ranking variety in each column

Growers: Saginaw Valley Research Farm and Blumfield Research Center
Planting Dates: Richville - April 12, Frankenmuth - May 10
Inoculation Dates: Richville - July 2, Frankenmuth - July 11
Evaluation Period: Richville - Aug 14 to Sept 14, Frankenmuth - Aug 16 to Sept 9

Variety	Cerc Rating $0-9$
B-12RR89	2.5
C-288RR	2.7
HM-131RR	2.8
HM-50RR	2.8
HM-133RR	2.8
SX-1291RR	2.9
SX-1281RR	3.0
M-208NT RR	3.0
HM-NT9425RR	3.0
HM-9401RR	3.1
HM-9402RR	3.1
SX-1260RR	3.2
B-10RR34	3.4
HM-27RR	3.4
M-207NT RR	3.4
SX-1215RR	3.5
SX-1211N RR	3.5
SX-1228RR	3.5
HM-NT9403RR	3.5
C-202RR	3.5
SX-1226RR	3.6
HM-173RR	3.6
HM-28RR	3.7
SX-1212RR	3.7
Ceraspa 0-9 Rain Scal\|	

Variety	Cerc Rating $0-9$
SX-1229RR	3.8
B-18RR4N	3.9
B-12RR2N	4.0
C-059RR	4.1
HM-9400RR	4.1
C-222NT RR	4.1
C-086RR	4.2
C-219RR	4.2
HM-9447RR	4.3
C-RR074NT	4.4
B-19RR1N	4.4
SX-1227N RR	4.5
B-12RR6N	4.5
M-116	4.6
B-17RR32	4.6
HM-9453RR	4.7
SX-1213N RR	4.8
C-824RR	4.8
B-12RR40	4.8
M-206	5.2
Average	3.8
LSD 5\%	0.3
CV \%	6.4

Cercospora 0-9 Rating Scale:

0 = no spots, 1 = very few spots, 2 = up to 10 spots/leaf, 2.5 = up to 50 spots/leaf, $3=100$ to 200 spots/leaf (approx. 3\% leaf desiccation), $4=$ up to 10% leaf desiccation, $5=$ up to 25% desiccated, $6=$ up to 50% desiccated, $7=$ up to 75% desiccated, $8=$ up to 90% desiccated, $9=$ leaves completely dead.

	Average of Blumfield, SVRF and USDA		
Trial Quality: Location: Plot Size: Inoculation:	Collins 6 reps lated		
Variety	Root Rating 0-7	Variety	Root Rating 0-7
HM-NT9403RR	3.5	B-12RR6N	4.3
HM-9402RR	3.5	C-RR288	4.3
C-RR086	3.5	B-12RR40	4.4
HM-9400RR	3.6	C-RR219	4.5
HM-50RR	3.7	C-RR222NT	4.5
HM-133RR	3.7	SX-1211N RR	4.5
HM-173RR	3.7	B-17RR32	4.6
HM-NT9425RR	3.7	B-18RR4N	4.7
M-NT208	3.8	SX-1228RR	4.7
HM-27RR	3.8	SX-1212RR	4.7
C-RR202	3.8	SX-1215RR	4.8
HM-9401RR	3.8	C-RR824	4.8
HM-131RR	3.9	SX-1213N RR	4.8
SX-1281RR	3.9	B-19RR1N	4.9
M-NT207	4.0	M-206	4.9
B-10RR34	4.0	SX-1260RR	4.9
B-12RR89	4.0	HM-9453RR	4.9
SX-1291RR	4.0	Susc Check	5.1
M-116	4.1	SX-1229RR	5.1
SX-1226RR	4.2	HM-9447RR	5.1
C-RR059	4.2	C-RR074NT	5.3
B-12RR2N	4.3	Average	4.3
SX-1227N RR	4.3	LSD 5\%	0.7
HM-28RR	4.3	CV \%	9.8

Disease Index (0-7):
Rating scale $0=$ no disease, 1 = very minor, $2=$ minor ($<5 \%$ rot), $3=6$ to 25% rot, $4=26$ to 50\% rot, $5=51$ to 75% rot, $6=75$ to 95% rot and $7=$ root completely rotted.

Sugar beet activities of the USDA-ARS East Lansing conducted in cooperation with Saginaw Research \& Extension Center during 2012

Mitch McGrath, Linda Hanson, and Tom Goodwill USDA - Agricultural Research Service, East Lansing, MI

Evaluation and rating plots were planted at the Saginaw Valley Research \& Extension Center in Frankenmuth, MI in 2012 that focused on Cercospora leaf spot performance of a wide range of Beta vulgaris materials as well as agronomic performance of sugar beet breeding populations. Leaf spot trials were conducted in conjunction with Beet Sugar Development Foundation (BSDF) and included USDA-ARS cooperator germplasm. Michigan Sugar Cooperative evaluated ARS breeding germplasm using their standard practices. Otherwise, all trials were planted following normal fall and spring tillage operations with a USDA-ARS modified John Deere / Almaco research plot planter. The BSDF evaluation nursery was planted on April 25, 2012, followed by the other evaluation and breeding nurseries on May 10 and 11. A randomized complete-block design with one to four replications was used, depending on the specific test. All plots were 4.5 m (15 ft) long, with $51 \mathrm{~cm}(20 \mathrm{in})$ between rows. Azoxystrobin was applied in a band in furrow at planting to control Rhizoctonia damping-off and crown and root rot. All entries in the BSDF Cercospora nursery were RoundUp Ready, thus weeds were controlled with glyphosate in this nursery. For other nurseries, weed seedlings were controlled with two applications of phenmedipham, desmedipham, triflusulfuron methyl and clopyralid (6 June and 15 June) and once with S-metolachlor (29 June), and hand weeding was done to control larger weeds as needed. The beet crop was thinned to stand by hand with the generous help of Michigan Sugar Cooperative. Bolting beets were removed throughout the season.

The official BSDF cooperative Cercospora leaf spot evaluation nursery had entries from two companies, with a total of 198 entries evaluated. This nursery was 2 -row, 4 replications conducted in a double-blind fashion. The nursery was inoculated on 7 Jul with a liquid spore suspension of Cercospora beticola. Results showed good concordance with results with leaf spot nurseries conducted at other sites across the Midwest, summed over the past three years (i.e. the overall average within a half point on the rating scale). Visual evaluations were taken from plot appearance using a standardized disease index (DI) which has a scale from 0 (no symptoms), 1 (a few scattered spots), 2 (spots coalescing or in large numbers on lower leaves only), 3 (some dieback on lower leaves, but leaves not entirely dead), 4-8 (increasing amounts of dead and diseased tissue), 9 (mostly dead with few remaining living leaves with large dead patches), and 10 (all leaves dead). The high night temperatures in the summer of 2012, combined with high humidity and low rainfall, contributed to a moderate leaf spot epiphytotic. Supplemental moisture was applied using an overhead irrigation system on 13, 16 and 17 Jul. The BeetCast leaf spot advisory in the Frankenmuth area from 1 May to 20 Sep was 185 cumulative daily severity values. The peak of the epidemic occurred around 24 Aug, after which regrowth started to outpace new disease development, thus ratings were discounted after this date.

USDA-ARS cooperator germplasm evaluations included 36 USDA-ARS germplasm entries from Fargo, ND and 215 entries from Ft. Collins, CO, along with 48 open-pollinated entries from the East Lansing program. Mean leaf spot scores by variety in 2012 ranged from 3.0 to 8.0. Results from the 48 East Lansing entries are in Table 1. East Lansing materials were generated from a wide sample of sugar beet germplasm including traditional East Lansing materials with good resistance to Aphanomyces damping-off and Cercospora leaf spot, and smooth root (SR)
genetic backgrounds, as well as newer materials with resistances to nematode, rhizomania, Rhizoctonia, and abiotic stress. The range of Cercospora leaf spot reaction values suggest reasonable levels of resistance to Cercospora leaf spot in 21 of the 48 East Lansing entries (e.g. Cercospora rating ≤ 3.0). Check variety scores in this nursery were 2.0 for the resistant germplasm EL50/2 and 3.8 for the susceptible check C869. Michigan Sugar Cooperative obtained agronomic information in Table 1 in a separately managed trial, and their assistance is gratefully acknowledged here. Emergence and stand establishment was poor to fair in these nurseries, due to late planting.

Table 1: Cercospora reaction and agronomic values of germplasm releases and potential germplasm releases for open-pollinated USDA-ARS East Lansing germplasm evaluated at the SVREC in 2012 arranged in decreasing order of recoverable white sugar per ton (RWST).

Accession ID	Identifier	Lineage	Cerc Rating	RWSA	RWST	Tons/A	Sugar	Purity
EL-A027150	Group6 - Nema	Nematode group	3.7	5334.6	240.2	22.0	16.9	93.3
EL-A027152	SR100	(Low water / HS elites) x early nema selns	3.7	5246.8	240.1	21.8	16.9	93.3
EL-A024983	SR99	(95HS2/sel) x 07-5E	4.0	6118.9	239.8	25.5	17.0	93.0
EL-A022776	EL64, pEL63	(Salinas nematode $\times 07-5 \mathrm{E} / 24 \mathrm{~A}$) $\times 08-5 \mathrm{E}$	3.7	4191.5	237.4	17.7	16.8	93.1
EL-A027007	EL63	(Salinas nematode \times 07-5E/24A) $\times 08-5 \mathrm{E}$	4.0	5293.2	236.0	22.4	16.9	92.7
EL-A024975		SR (low water) w/EL	2.7	5684.3	235.5	24.1	16.8	92.8
EL-A024969	SR101	SR (elites) w/Rhiz	3.0	5961.8	234.0	25.4	16.7	92.8
EL-A029769	EL61	2008 Brabrant nematode selections mix	3.7	5040.3	234.0	21.5	16.5	93.3
EL-A029002	storage	Broad mix of roots that stored well	3.3	5457.8	233.7	23.3	16.9	92.2
EL-A015030	SP7322	Increase of SP6822 (US H20 pollinator)	2.7	3929.8	232.2	16.8	16.4	93.4
EL-A029713		Nematode (Group 2)	3.0	5036.8	231.9	21.5	16.6	92.7
EL-A021740	EL60	Rhizoc, rhizomania, Traditional EL, Cerc selections	3.0	5144.8	231.6	22.2	16.6	92.5
EL-A029704		SR98/2	3.0	5279.6	231.2	22.8	16.7	92.3
EL-A029714		Cerc (EL50 et al) \& 2010 Cerc EL OP's	3.0	5453.0	230.5	23.7	16.5	92.6
EL-A029715		SR98/2 \& FC mix	2.7	4967.9	229.9	21.6	16.4	92.9
EL-A027010	EL64	Low water x nematode selections	3.7	5482.6	228.4	24.6	16.3	92.3
EL-A024974		SR w/EL	3.0	5091.1	227.9	22.1	16.4	92.4
EL-A027019	EL59x	Sclerotuim rolfsii tolerant x 08-5E (nematode)	3.3	5450.6	227.2	24.1	16.3	92.6
EL-A027017	EL65	Bay City $\operatorname{sln} \times 08-5 \mathrm{E}$ (nematode)	4.3	5084.1	227.1	22.4	16.3	92.6
EL-A028999	CRB4 SF mix	CRB4 mixer	2.7	1029.3	225.4	4.5	16.3	92.4
EL-A015028	C869 O-type	C869 O-type	3.3	2812.6	224.8	12.5	16.5	91.6
EL-A022775	EL58	Bay City $\ln \times 08-5 \mathrm{E}$ (nematode)	4.0	5624.6	224.6	25.0	16.2	92.5
EL-A022809	EL57, SF Mixer "B"	self fertile mixer, broad SF base	4.3	4515.0	224.3	20.1	16.2	92.5
EL-A029712		Nematode (Group 1)	3.0	4621.5	223.9	20.4	16.2	92.3
EL-A024978		O-type IC	3.3	4954.2	223.1	22.1	16.2	92.1
EL-A024972		EL w/SR (group 10)	2.7	4817.7	222.1	21.6	16.1	92.3
EL-A029768	EL59	Sclerotuim rolfsii tolerant x 08-5E (nematode)	3.7	4388.9	221.6	19.8	16.1	92.1
EL-A029770	EL62	M1-3 nematode	4.0	4232.9	221.4	19.1	16.0	92.3
EL-A024973		EL w/SR (group 11)	3.0	4834.1	221.3	22.0	16.2	91.9
EL-A029711		Cerc - from broad mix (EL)	3.0	5078.4	220.0	22.9	15.9	92.3
EL-A027140		CN927-202 x 08-5E	4.0	5407.0	219.8	24.6	16.0	91.9
EL-A024966		SR w/ salt (elites \& low water)	4.3	6330.8	219.7	28.8	16.1	91.9
EL-A024957		Rhizoc, rz, Trad EL, Cerc sln	3.0	5537.4	219.1	25.2	16.1	91.7
EL-A029686		SF mix: 2011 group A	2.7	3855.3	218.8	17.7	15.9	92.2
EL-A027018		[EL55 x 08-5E (nematode)] $\times 2010$ 5A : Nema Yld	3.7	5611.5	218.8	25.5	15.8	92.4
EL-A029687	self fertile "B" cross	SF mix: "B" (group B)	3.0	5090.1	216.0	23.6	15.9	91.6
EL-A029709		Saunders and Storage mix	3.0	4701.1	215.7	21.9	15.7	92.2
EL-A027149	Group5 - SR98	Rhizoc - SR98	3.0	4302.2	214.8	19.9	15.8	91.8
EL-A024961		Rhizoc / salt tol group	3.3	5368.8	213.7	25.1	15.6	92.1
EL-A027136		PI 518160 germ test seln	3.7	4872.9	212.6	23.0	15.8	91.3
EL-A027158	Group2-SR rhizoc	Rhizoc-SR	3.0	3563.3	203.8	17.1	15.3	91.0
EL-A027156	Group1-Cerc SR	Broad SR stream - Cerc sln	3.7	2699.6	203.5	13.0	15.4	90.4
EL-A027154		Rhizoc / rhizopus selection	3.3	4194.3	201.1	20.9	15.1	90.9
EL-A027145		PI 266100 germ test seln	4.3	4923.6	194.1	25.1	14.5	91.5
EL-A024965		Germ test selns (salt w/ SR)	4.0	4449.7	183.8	23.8	14.2	90.1
EL-A027138		PI 232889 germ test seln	3.3	4185.8	176.5	23.5	13.8	89.8
EL-A027151	Group7-Salt	Salt tolerant selections group	4.0	3233.6	172.1	18.9	13.9	88.6
EL-A027155	Group3 - RngA Aph	RngA - Aph + Rhizoc	3.0	1941.0	160.3	12.0	13.1	88.4
Grand Mean			3.4	4717.2	219.7	21.4	16.0	92.0
CV			20.4	19.6	6.7	16.7	4.7	1.0
LSD ($\mathrm{P}=.05$)			0.8	1292.8	20.7	5.0	1.1	1.2

Thirty Plant Introductions (PIs) from the USDA-ARS National Plant Germplasm System (NPGS) Beta Collection [garden beet, sugar beet, leaf beet, fodder beet (Beta vulgaris L), and wild beet (Beta spp.)] were evaluated for resistance to Cercospora beticola. Internal controls included a moderately susceptible check, C869, and a resistant check, EL50/2 (PI 664912). One entry, PI 663876, was not included in analysis as only one plot was available for rating. At the 12 Sep rating, means of the resistant and susceptible internal controls for the entire nursery were 3.1 and 5.0, respectively. At the peak of the epiphytotic in 2011 (24 Aug), these means were 3.5 and 5.9 for resistant and susceptible, respectively. An analysis of variance (PROC GLM - SAS) on the disease indices (visual evaluation scores) determined that there were significant differences among entries ($\mathrm{P} \leq 0.05$) on all dates of evaluation. One accession, PI 504285, was not significantly different from the resistant control at all four ratings. Another accession, PI 504186, was not significantly different from the resistant control at the final two rating dates. In contrast, two accessions, W6 17103 and PI 578086 had average ratings that were significantly higher than the susceptible control at all but the first rating date, and another accession, PI 590582 was significantly higher at the final two rating dates. Twelve accessions (Ames 4219, PI 504186, PI 504285, PI 518307, PI 518339, PI 518360, PI 518365, PI 518367, PI 518411, PI 546523, PI 599352, and PI 590811) required removal of seed stalks from at least one replicate during the season. These data, and more information on the accessions evaluated, are available through the USDA-ARS GRIN database at http://www.ars-grin.gov/npgs.

Table 2: Cercospora leaf spot reaction of 30 Plant Introductions.

	Identification			Disease Index ${ }^{2}$			
Entry	Donor's ID	subsp.	Origin	Aug 22	Aug 29	Sep 5	Sep 12
Ames 4219	IDBBNR 5606	maritima	United Kingdom......	.3.3	3.7	3.7	4.7
PI 504186	wild beet	maritima	Italy.....................2.3	3.3	3.3	3.3
PI 504285	wild beet	maritima	France..................1.3	1.7	2.7	3.0
PI 518307	IDBBNR 5801	maritima	United Kingdom......3.7	4.3	4.3	5.0
PI 518339	IDBBNR 5833	maritima	United Kingdom......3.3	4.3	4.3	5.0
PI 518345	IDBBNR 5839	maritima	United Kingdom......	...3.3	3.7	4.0	4.7
PI 518347	IDBBNR 5841	maritima	United Kingdom......	.2.7	3.7	4.0	4.3
PI 518353	IDBBNR 5847	maritima	United Kingdom......2.7	3.7	4.0	4.7
PI 518360	IDBBNR 5854	maritima	United Kingdom......	.2.7	3.3	4.3	4.7
PI 518365	IDBBNR 5859	maritima	United Kingdom......3.0	3.7	4.0	4.3
PI 518367	IDBBNR 5861	maritima	United Kingdom......	...3.0	3.7	4.0	4.7
PI 518411	IDBBNR 5908	maritima	Ireland..................3.3	4.0	4.3	5.0
PI 546523	IDBBNR 9690	maritima	Greece..................	.2.0 ${ }^{\text {w }}$	3.0 w	$3.5{ }^{\text {w }}$	$4.0{ }^{\text {w }}$
PI 599352	R 720	maritima	United States.	.2.7	3.3	4.0	4.3
PI 663876	C23BM	maritima	United States.	...nd	nd	nd	nd
PI 578086	C76-43	vulgaris	United States..	. 4.0	5.3	5.7	6.7
PI 590580	US 033	vulgaris	United States..	. 3.7	4.7	5.0	6.3
PI 590581	US 015	vulgaris	United States..	. 3.0	3.7	4.3	5.3
PI 590582	US 056/2	vulgaris	United States..	. 4.0	5.0	6.0	7.0^{2}
PI 590583	US 035	vulgaris	United States..	.3.0 ${ }^{\text {w }}$	$4.0{ }^{\text {w }}$	$5.0{ }^{\text {w }}$	$6.0{ }^{\text {w }}$
PI 590675	C 32	vulgaris	United States.	.3.3	4.7	5.0	6.3
PI 590725	L 34	vulgaris	United States..	. 3.0	4.3	5.3	6.3
PI 590743	SLC 19	vulgaris	United States.	. 4.0	5.3	5.3	6.3
PI 590747	SLC 23	vulgaris	United States.	.3.3	4.7	5.0	6.3
PI 590748	SLC 35	vulgaris	United States..	. 2.7	4.0	4.0	5.0
PI 590811	SLC 003	vulgaris	United States..	. $3.0{ }^{\text {w }}$	$4.0{ }^{\text {w }}$	$4.0{ }^{\text {w }}$	$4.0{ }^{\text {w }}$
PI 590835	C 789	vulgaris	United States.	.2.3	3.3	4.0	5.3
PI 590851	C 779	vulgaris	United States...	. 1.7	3.0	3.7	4.0
PI 610268	SLC 101	vulgaris	United States.	.1.5 ${ }^{\text {w }}$	2.5 w	$3.5{ }^{\text {w }}$	$3.5{ }^{\text {w }}$
W6 17103	US 41	vulgaris	United States..	. 4.0	5.3	6.0	7.3
Leaf Spot S	usceptible Check ${ }^{\text {y }}$	869...USA		.3.0	4.0	4.3	5.3
Leaf Spot R	sistant Check ${ }^{\text {x }}$	50/2)...U	A.	...1.0	1.3	2.7	3.0
		LSD		1.42	1.39	1.21	1.53
Trial Mean.	\ldots		\ldots.2.9	3.9	4.3	5.1
${ }^{\mathrm{z}}$ Disease Index is based on a scale where $0=$ healthy to $10=$ all leaves dead.							
${ }^{\text {y }}$ The Leafspot Susceptible Check is C869 (Lewellen, R.T. 2004. Crop Sci. 44:357)							
${ }^{\mathrm{x}}$ The Leafspot Resistant Check is EL50/2 (PI 664912).							
${ }^{\text {w }}$ Numbers based on average from two plots as the third plot had no plants							

A series of other trials were done to advance breeding and genetic materials. The population 'CRB5', F5 materials derived from the cross between C869 (Cercospora susceptible) and EL50 (resistant), was planted in the section of the nursery that was inoculated with Cercospora. Each entry was a single 1-row plot, and 621 CRB5 entries were evaluated, of which 588 (95\%) emerged and were scored for disease (and subsequently harvested for a further generation of selfing). Stands were generally thin (mean $=12.9$ plants /plot; standard deviation $=9.52$; range $=$ 0 to 55). Cercospora ratings were done on August 22, September 5, and September 19. The same scoring system as above was used, and the range of values observed in the CRB5 materials was between 2.0 and 6.0, however relatively few entries were at either extreme (Figure 1, obtained using JMP v10 software), which is consistent with previous generation results. Inheritance of Cercospora resistance is complex. This population was also segregating for a novel curled petiole phenotype

Figure 1: Distribution of Cercospora leaf spot ratings for the CRB5 recombinant inbred population. Darker bars are entries with higher susceptibility on the final rating date.

Other recombinant inbred populations were advanced, including 115 HSB4 (cross between C869 and L19 for analyses of the genetics of high sugar content), 79 RTA5 (cross between C869 and EL51 for genetic analyses of Rhizoctonia resistance), and 141 C869 x WB879 advanced generation materials that appear to be segregating for presence /absence of the enlarged root phenotype characteristic of beet root crop types. A series of 193 early generation self-fertile materials was also evaluated for emergence and general performance, of which 25 were selected for further breeding. Finally, 281 MSR6 recombinant inbred lines (C869 x table beet) were evaluated for root and sugar yield. Sugar data is still being evaluated, and root weight data is summarized in Figure 2. This population is being used to examine genetics of sucrose yield.

Figure 2: Distribution of average weight of 5 largest beets from each of 281 MSR6 entries.
We extend our gratitude to Paul Horny and Dennis Fleischmann for their essential help with nursery and farm operations, to Michigan Sugar for help with thinning and agronomic evaluations, and to MSU undergrads Chris Farver, Nick Boerman, Bridgett Bli and Jacob Stiefel for their help throughout the field season.

Efficacy of application of foliar fungicides for control of Cercospora leaf spot in sugar beet. W. W. Kirk, R. L Schafer, N. Rosenzweig. Dept. Plant, Soil and Microbial Science, MSU

Sugar beet cv. ACH RR-824 was PAT-treated and planted at the Michigan State University Bean and Beet Farm, Richville, MI on 4 Apr. Seed was planted at 1" depth into fourrow by $50-\mathrm{ft}$ plots (ca. 4.375 in. between plants to give a target population of 275 plants $/ 100 \mathrm{ft}$. row) with $30^{\prime \prime}$ between rows replicated four times in a randomized complete block design. Fertilizer was drilled into plots immediately before planting, formulated according to results of soil tests ($125 \mathrm{lb} 46-0-0 / \mathrm{A}$). No additional nitrogen was applied to the growing crop. Plots were inoculated by spraying a conidial suspension of C. beticola collected from infected sugarbeet foliar residue from the previous season on 16 Jun across all plots. Fungicides were applied starting after the 45 Beetcast disease severity values were recorded in the area on 1 Jul (Ontario Weather Network, Ridgetown, ON, Canada), applications were initiated on 4 Jul and three to five applications were made. Fungicides were applied with a hand-held R\&D spray boom delivering $25 \mathrm{gal} / \mathrm{A}(80 \mathrm{p} . \mathrm{s} . \mathrm{i}$) and using three XR11003VS nozzles per row. Induce 480XL 0.25 $\% \mathrm{v} / \mathrm{v}$ was applied where indicated as "Induce" on the results table unless a different rate was indicated. Weeds were controlled by cultivation and with Roundup Original Max 2.0 pt/A applied at GS2-4 and GS 6-8. Insects were controlled as necessary. Foliar leaf spot severity (\%) was measured on 24 Aug and 5 Sep using a $0-10$ scale. Foliar leaf spot severity was measured using a $0-10$ scale; $0=0 \% ; 1=1-5,0.1 \% ; 2=6-12,0.35 \% ; 3=13-25,0.75 \% ; 4=26-50$, 1.5%; 5= $51-75,2.5 \%$; spots/leaf or severity \%; respectively; 6= 3\% (proven economic damage); $7=6 \% ; 8=12 \% ; 9=25 \%$; and $10 \geq 50 \%$ severity. The relative area under the late blight disease progress curve was calculated for each treatment using percentage leaf spot severity from the date of appearance of leaf spot to 29 Aug, a period of 21 days. Beetroots were machineharvested on 19 Sep and individual treatments were weighed. Sugar content was measured at the Michigan Sugar Company analytical service laboratory. Meteorological variables were measured with a Campbell weather station located at the farm, latitude 43.3995 and longitude -83.6980 deg. Average daily air temperature (${ }^{\circ} \mathrm{F}$) from 1 Apr was $45.3,61.5,67.8,74.9,68.2$ and 64.5 (Apr, May, Jun, Jul, Aug, to 17 Sep, respectively) and the number of days with maximum temperature $>90^{\circ} \mathrm{F}$ was $0,0,5,12,1$ and 0 (Apr, May, Jun, Jul, Aug, to 17 Sep, respectively). Average daily relative humidity (\%) over the same period was 57.3, 61.0, 58.9, 63.1, 67.5 and 65.6 (Apr, May, Jun, Jul, Aug, to 17 Sep, respectively). Precipitation was 1.19, 3.92, 1.1, 3.62, 4.03 and 1.32 in (Apr, May, Jun, Jul, Aug, to 17 Sep, respectively). There were 169 Beetcast DSV values accumulated in the Saginaw area from 1 May to 17 Sep at Richville, MI.

Weather conditions during the growing season were very conducive for the development of Cercospora leaf spot (CLS) and of note were the hot and humid conditions during Jul and Aug. CLS reached an index of about 8.0 8.3, 9.3 and 9.5 in the untreated control by $8,17,22$ and 29 Aug, respectively. Treatments with CLS indices less than 5.5, 6.0, 7.5 and 8.0 had significantly less Cercospora leaf spot than the untreated control by 8, 17, 22 and 29 Aug, respectively. Several treatments had substantial disease development [CLS indices >6 (proven economic impact)] by 8 Aug and many more by the end of the evaluation period. The RAUDPC in the untreated control reached 33.8 by 29 Aug and all treatments had significantly lower RAUDPC values in comparison to the untreated control. Treatments with yield greater than 24.2 t/A had significantly greater yield per acre than the untreated control ($21.0 \mathrm{t} / \mathrm{A}$). Treatments with recoverable white sucrose per acre greater than $5786 \mathrm{lb} / \mathrm{A}$ had significantly greater yield per acre than the untreated control ($4761 \mathrm{lb} / \mathrm{A}$). No phytotoxicity was observed from any treatments.

Table 1. Control of Cercospora leaf spot with fungicides.
$\left.\begin{array}{lllllllll}\hline & & & & & \text { RAUDPC } \\ \text { (0-100) }\end{array}\right)$

Treatment and rate/A	Cercospora leaf spot ${ }^{\text {a }}$ (0-10 scale)				$\begin{gathered} \hline \text { RAUDPC } \\ \text { (0-100) } \\ 29 \text { Aug } \\ \hline \end{gathered}$	Yield (t/A)	RWSA ${ }^{\text {c }}$ (lb)
Eminent 125SL $13 \mathrm{fl} \mathrm{oz} \mathrm{+}$							
Super Tin 4L $8 \mathrm{fl} \mathrm{oz} \mathrm{(A);}$							
Super Tin 4L $8 \mathrm{fl} \mathrm{oz} \mathrm{(B);}$							
Headline 2.09SC $9 \mathrm{fl} \mathrm{oz} \mathrm{(C);}$							
Eminent 125SL $13 \mathrm{fl} \mathrm{oz} \mathrm{(E)}$.	0.0e	2.5i-1	5.0g-l	5.8g-1	2.0hi	29.6b-e	7543ab
Eminent 125SL $13 \mathrm{fl} \mathrm{oz} \mathrm{+}$							
Topsin 4.5F $7.6 \mathrm{fl} \mathrm{oz} \mathrm{(A);}$							
Super Tin 4L $8 \mathrm{fl} \mathrm{oz} \mathrm{+}$							
Topsin 4.5F $7.6 \mathrm{fl} \mathrm{oz} \mathrm{(B);}$							
Headline 2.09SC $9 \mathrm{fl} \mathrm{oz} \mathrm{(C);}$							
Eminent 125SL $13 \mathrm{fl} \mathrm{oz} \mathrm{(E)}$.	0.0e	6.0a-f	8.0a-d	8.0a-e	6.8f-i	30.9a-c	7723ab
Eminent 125SL $13 \mathrm{fl} \mathrm{oz} \mathrm{+}$							
Topsin 4.5F $7.6 \mathrm{fl} \mathrm{oz} \mathrm{(A);}$							
Headline 2.09SC $9 \mathrm{fl} \mathrm{oz} \mathrm{(B);}$							
Super Tin 4L $8 \mathrm{fl} \mathrm{oz} \mathrm{(C);}$							
Eminent 125SL $13 \mathrm{fl} \mathrm{oz} \mathrm{(E)...............}$.	0.0e	2.5i-l	4.8h-m	6.0f-1	2.1hi	28.9b-h	7179bc
Eminent 125SL $13 \mathrm{fl} \mathrm{oz} \mathrm{+}$							
Super Tin 4L $8 \mathrm{fl} \mathrm{oz} \mathrm{(A);}$							
Headline 2.09SC $9 \mathrm{fl} \mathrm{oz} \mathrm{(B);}$							
Super Tin 4L $8 \mathrm{fl} \mathrm{oz} \mathrm{(C);}$							
Eminent 125SL $13 \mathrm{fl} \mathrm{oz} \mathrm{(E)................}$.	0.0e	0.0m	2.3n	4.8kl	0.7i	27.7c-j	7270bc
Eminent 125SL $13 \mathrm{fl} \mathrm{oz} \mathrm{+}$							
Super Tin 4L $8 \mathrm{fl} \mathrm{oz} \mathrm{(A);}$							
Headline 2.09SC $9 \mathrm{fl} \mathrm{oz} \mathrm{(B);}$							
Super Tin 4L $8 \mathrm{fl} \mathrm{oz} \mathrm{+}$							
Topsin 4.5F $7.6 \mathrm{fl} \mathrm{oz} \mathrm{(C);}$							
Eminent 125SL $13 \mathrm{fl} \mathrm{oz} \mathrm{(E)}$.	0.0e	1.8klm	2.3n	5.5h-l	1.5Hi	25.0jk	6492c-h
Eminent 125SL $13 \mathrm{fl} \mathrm{oz} \mathrm{+}$							
Echo 720SC $16 \mathrm{fl} \mathrm{oz} \mathrm{(A);}$							
Echo 720SC $16 \mathrm{fl} \mathrm{oz} \mathrm{(B);}$							
Headline 2.09SC $9 \mathrm{fl} \mathrm{oz} \mathrm{(C);}$							
Echo 720SC $16 \mathrm{fl} \mathrm{oz} \mathrm{(E)..}$.	0.0e	4.0f-k	5.5f-k	7.0d-h	3.8g-i	28.5b-h	7088b-e
Eminent 125SL $13 \mathrm{fl} \mathrm{oz} \mathrm{+}$							
Echo 720SC $16 \mathrm{fl} \mathrm{oz} \mathrm{(A);}$							
Echo 720SC $16 \mathrm{fl} \mathrm{oz} \mathrm{(B);}$							
Headline 2.09SC $9 \mathrm{fl} \mathrm{oz} \mathrm{(C);}$							
Echo 720SC $24 \mathrm{fl} \mathrm{oz} \mathrm{(E).......................}$.	1.0e	3.8f-1	5.5f-k	6.3f-k	2.9Hi	31.0ab	7847ab
Eminent 125SL $13 \mathrm{fl} \mathrm{oz} \mathrm{+}$							
Echo 720SC $16 \mathrm{fl} \mathrm{oz} \mathrm{(A);}$							
Echo 720SC $16 \mathrm{fl} \mathrm{oz} \mathrm{+}$							
Topsin 4.5F $7.6 \mathrm{fl} \mathrm{oz} \mathrm{(B);}$							
Headline 2.09SC $9 \mathrm{fl} \mathrm{oz} \mathrm{(C);}$							
Echo 720SC $16 \mathrm{fl} \mathrm{oz} \mathrm{(E)..}$.	0.0e	4.0f-k	5.8e-j	7.0d-h	3.2g-i	29.5b-f	7334bc
SA-0040301 SL $14 \mathrm{fl} \mathrm{oz} \mathrm{(A);}$							
Super Tin 4L $8 \mathrm{fl} \mathrm{oz} \mathrm{+}$							
Topsin 4.5F $7.6 \mathrm{fl} \mathrm{oz} \mathrm{(B);}$							
Super Tin 4L $8 \mathrm{fl} \mathrm{oz} \mathrm{(C);}$							
SA-0040301 SL $14 \mathrm{fl} \mathrm{oz} \mathrm{(E)...............}$.	5.0bc	7.5abc	8.0a-d	8.5a-d	16.3de	26.4e-k	5734hij
SA-0040301 SL $17 \mathrm{fl} \mathrm{oz} \mathrm{(A);}$							
Super Tin 4L $8 \mathrm{fl} \mathrm{oz} \mathrm{+}$							
Topsin 4.5F $7.6 \mathrm{fl} \mathrm{oz} \mathrm{(B);}$							
Super Tin 4L $8 \mathrm{fl} \mathrm{oz} \mathrm{(C);}$							
SA-0040301 SL $17 \mathrm{fl} \mathrm{oz} \mathrm{(E)...............}$.	5.5abc	8.0ab	8.5abc	9.0ab	20.9cd	29.5b-f	6820b-g

Treatment and rate/A		ora le	ot ${ }^{\text {a }}$ (0-	ale)	$\begin{gathered} \hline \text { 2AUDPC } \\ (0-100) \\ 29 \mathrm{Aug} \\ \hline \end{gathered}$	Yield (t/A)	RWSA ${ }^{\text {c }}$ (lb)
Eminent 125SL $13 \mathrm{fl} \mathrm{oz} \mathrm{+}$							
Manzate Prostick 75DF 2 lb (A);							
Super Tin 4L $8 \mathrm{fl} \mathrm{oz} \mathrm{+}$							
Topsin 4.5F $7.6 \mathrm{fl} \mathrm{oz} \mathrm{(B);}$							
Inspire XT 2.08SC $7 \mathrm{fl} \mathrm{oz}+$							
Manzate Prostick 75DF 2 lb (C);							
Cuprofix Ultra 71.1DF +							
Manzate Prostick 75DF 2 lb (D);							
Proline 480SC $5 \mathrm{fl} \mathrm{oz}+$							
Manzate Prostick 75DF 2 lb (E).............	0.0e	2.8h-I	$4.5 \mathrm{i}-\mathrm{m}$	5.0jkl	1.8hi	$28.4 \mathrm{~b}-\mathrm{i}$	7388bc
Eminent 125SL $13 \mathrm{fl} \mathrm{oz} \mathrm{+}$							
Manzate Prostick 75DF 2 lb (A);							
Super Tin 4L $8 \mathrm{fl} \mathrm{oz} \mathrm{+}$							
Topsin 4.5F $7.6 \mathrm{fl} \mathrm{oz} \mathrm{(B);}$							
Headline 2.09SC $9 \mathrm{fl} \mathrm{oz}+$							
Manzate Prostick 75DF 2 lb (C);							
Cuprofix Ultra 71.1DF +							
Manzate Prostick 75DF 2 lb (D);							
Proline 480SC $5 \mathrm{fl} \mathrm{oz}+$							
Manzate Prostick 75DF 2 lb (E).............	0.0e	$2.3 \mathrm{j}-\mathrm{m}$	$3.5 \mathrm{k}-\mathrm{n}$	5.8g-1	1.7hi	28.0b-j	7327bc
Eminent 125SL $13 \mathrm{fl} \mathrm{oz}+$							
Manzate Prostick 75DF 2 lb (A);							
Super Tin 4L $8 \mathrm{fl} \mathrm{oz} \mathrm{+}$							
Topsin 4.5F $7.6 \mathrm{fl} \mathrm{oz} \mathrm{(B);}$							
Proline 480SC $5 \mathrm{fl} \mathrm{oz}+$							
Manzate Prostick 75DF 2 lb (C);							
Cuprofix Ultra 71.1DF +							
Manzate Prostick 75DF 2 lb (D);							
Inspire XT 2.08SC $7 \mathrm{fl} \mathrm{oz} \mathrm{+}$							
Manzate Prostick 75DF 2 lb (E)............	0.0e	4.3f-j	6.3d-i	7.3c-g	3.9g-i	27.6c-j	7149b-d
Proline 480SC $5 \mathrm{fl} \mathrm{oz} \mathrm{(A);}$							
Super Tin 4L $8 \mathrm{fl} \mathrm{oz} \mathrm{+}$							
Topsin 4.5F $7.6 \mathrm{fl} \mathrm{oz} \mathrm{(B);}$							
Topguard 1.04SC $14 \mathrm{fl} \mathrm{oz}+$							
Manzate Prostick 75DF 2 lb (C);							
Cuprofix Ultra 71.1DF +							
Super Tin 4L $8 \mathrm{fl} \mathrm{oz} \mathrm{(D);}$							
Inspire XT 2.08SC $7 \mathrm{fl} \mathrm{oz}+$							
Eminent 125SL $13 \mathrm{fl} \mathrm{oz} \mathrm{(E).................}$.	1.5 e	5.8b-f	$7.0 \mathrm{~b}-\mathrm{g}$	7.3c-g	6.1f-i	28.9b-h	7787ab
Bravo WS 6SC $16 \mathrm{fl} \mathrm{oz} \mathrm{(A-E).............}$.	1.5e	$5.3 \mathrm{c}-\mathrm{g}$	7.0b-g	7.0d-h	7.3f-h	29.1b-g	6889b-g
SA-0040501 SL $22 \mathrm{fl} \mathrm{oz} \mathrm{(A,E);}$							
Super Tin 4L $8 \mathrm{fl} \mathrm{oz} \mathrm{(B);}$							
Headline 2.09SC $9 \mathrm{fl} \mathrm{oz} \mathrm{(C)................}$.	1.0 e	5.5c-f	7.5a-f	7.5b-f	6.1f-i	29.3b-g	7633ab
Untreated Check..........................	8.0a	8.3a	9.3a	9.5a	33.8a	21.0i	4761j
${ }^{a}$ Foliar leaf spot severity; $0-10$ scale; $0=0 \% ; 1=1-5,0.1 \% ; 2=6-12,0.35 \% ; 3=13-25,0.75 \% ; 4=26-50,1.5 \% ; 5=51-75,2.5 \%$; spots/leaf or severity \%; respectively; $6=3 \%$ (proven economic damage); $7=6 \% ; 8=12 \% ; 9=25 \%$; and $10 \geq 50 \%$ severity							
${ }^{\text {b }}$ RAUDPC $=$ The relative area under the late	blight	rogress	calculate	each trea	from the	e of the first	valuation to 29
Aug, a period of 21 days ($\mathrm{Max}=100$)							
${ }^{\text {c }}$ RWSA $=$ Recoverable White Sucrose per Acre (Ton/A* Recoverable White Sucrose per Ton of sugarbeet)							
${ }^{\text {d }}$ Application dates: $\mathrm{A}=4 \mathrm{Jul}$; $=18 \mathrm{Jul}$; $=31 \mathrm{Jul}$; $=9$ Aug; E= 23 Aug							
${ }^{\mathrm{e}}$ Means followed by same letter are not significantly different at $\mathrm{P}=0.05$ (Fishers LSD)							
${ }^{\mathrm{f}}$ Induce applied at $0.25 \% \mathrm{v} / \mathrm{v}$							

Control of Rhizoctonia crown and root rot with fungicides, 2012.

W. W. Kirk, R. L Schafer and N. Rosenzweig; Department of Plant, Soil and Microbial Sciences, Michigan State University
East Lansing, MI 48824
Sugar beet cv. ACH RR-824 was PAT-treated and planted at the Michigan State University Bean and Beet Farm, Richville, MI on 4 Apr. Seed was planted at 1" depth into four-row by $50-\mathrm{ft}$ plots (ca. 4.375 in. between plants to give a target population of 275 plants $/ 100 \mathrm{ft}$. row) with 30 " between rows replicated four times in a randomized complete block design. Fertilizer was drilled into plots immediately before planting, formulated according to results of soil tests ($125 \mathrm{lb} 46-0-0 / \mathrm{A}$). No additional nitrogen was applied. All fungicides were applied with a hand held R\&D spray boom delivering 10 gal/A (50 p.s.i.) and using one XR8003 nozzle per row in a 6" band at planting or at GS 4-6. Applications were made at planting (A); and banded applications on 10 May at GS 4-6 (B), respectively. Cercospora leaf spot was controlled with an application of Eminent 125SL (13 fl oz) on 13 Jul and Inspire 2.08EC $7 \mathrm{fl} \mathrm{oz}+$ Kocide 3000 46.1WG 2 lb on 5 Aug. Weeds were controlled by cultivation and with Roundup Original Max $2.0 \mathrm{pt} /$ A applied at GS2-4 and GS 6-8. Insects were controlled as necessary. Plant stand was rated 13, 21 and 37 days after planting (DAP) and relative rate of emergence was calculated as the Relative Area Under the Emergence Progress Curve [RAUEPC from $0-37$ DAP, maximum value $=100$]. Plots were inoculated on 4 may [30 days after planting (DAP)] by spreading R. solani Anastemoses Group 2.2 (IIIB) infested millet across all plants in each plot. Incidence of infected plants was evaluated on 84 and 158 DAP. Samples of 50 beets per plot were harvested 154 DAP (10 ft from start of each plot from two center rows) and assessed for crown and root rot (R. solani) incidence (\%) and severity. Severity of crown and root rot was measured as an index calculated by counting the number of roots ($\mathrm{n}=20$) falling in class $0=0 \% ; 1=1-5 \% ; 2=6-10 \% ; 3=11-15 \% ; 4=15-25 \% ; 5=25-50 \% ; 6=50-100 \%$ surface area of root affected by lesions; and 7 = dead and/or extensively decayed root. The number in each class is multiplied by the class number and summed. The sum is multiplied by a constant to express as a percentage. Increasing index values indicated the degree of severity. The number of beets falling into classes $0-3$ was summed and a percentage calculated as marketable beets. The trial was not harvested due to the high incidence and severity of crown and root rot. Meteorological variables were measured with a Campbell weather station located at the farm, latitude 43.3995 and longitude -83.6980 deg. Meteorological variables were measured with a Campbell weather station located at the farm, latitude 43.3995 and longitude -83.6980 deg. Average daily air temperature $\left({ }^{\circ} \mathrm{F}\right)$ from 1 Apr was 45.3, 61.5, 67.8, 74.9, 68.2 and 64.5 (Apr, May, Jun, Jul, Aug, to 17 Sep, respectively) and the number of days with maximum temperature $>90^{\circ} \mathrm{F}$ was $0,0,5,12,1$ and 0 (Apr, May, Jun, Jul, Aug, to 17 Sep, respectively). Average daily relative humidity (\%) over the same period was 57.3, 61.0, 58.9, 63.1, 67.5 and 65.6 (Apr, May, Jun, Jul, Aug, to 17 Sep, respectively). Precipitation was 1.19, 3.92, 1.1, 3.62, 4.03 and 1.32 in (Apr, May, Jun, Jul, Aug, to 17 Sep, respectively).

Treatments with final plant stand greater than 71.3% were significantly different from the noninoculated untreated check (56.1\%) in terms of plant stand. No treatments were significantly different from either check in terms of RAUEPC. Soil temperature and moisture conditions enhanced development of crown and root rot throughout the season. The initial evaluation of crown and root indicated that no treatments were significantly different from the inoculated untreated check (6.0\%). The evaluation of crown and root at harvest indicated that all treatments were significantly different from the inoculated untreated check (25.2\%). All treatments had a lower severity index of crown and root rot on the beetroots and were significantly different to the untreated control (79.5). There was background crown and root to in the trial and although at low levels in the non-inoculated check treatments with less than 38.0 severity index of crown and root rot on the beetroots were not significantly different from the
non-inoculated check (22.5). In terms of marketable beetroots, treatments with a percentage of marketable greater than 62.5% were significantly different to the inoculated untreated control (44.5\%). Treatments with less than 79.5% marketable beetroots were significantly different from the not inoculated check (93.5% marketable) and the next best group were between 72.5 to 88.5% marketable. No phytotoxicity was observed from any treatments.

Table 1. Efficacy of fungicides against Rhizoctonia crown and root rot.

Treatment and rate/1000 ft. row	Plant stand ${ }^{\text {a }}$ 37 DAP $^{\text {b }}$ (\%)		$\begin{gathered} \text { RAUEPC }{ }^{\text {C }} \\ 0-37 \text { DAP } \\ \hline \end{gathered}$		$\begin{gathered} \text { Incidence } \\ \text { 84 DAP } \\ (\%) \\ \hline \end{gathered}$		Crown and rootIncidence154 DAP(\%)		$\begin{gathered} \text { Severity }^{\text {d }} \\ 154 \text { DAP (\%) } \\ \hline \end{gathered}$		Marketable beets (\%)	
Vertisan 1.67EC $0.4 \mathrm{fl} \mathrm{oz} \mathrm{(A}{ }^{\mathrm{e}}$)......	67.4	$a b c^{\text {f }}$	22.3	a	6.3	a-g	31.0	c-g	10.4	c-h	80.5	a-e
Vertisan 1.67EC $0.8 \mathrm{fl} \mathrm{oz} \mathrm{(A).....}$.	72.6	a	21.5	a	8.8	ab	35.0	b-g	11.7	b-h	72.0	c-f
Vertisan 1.67EC $1.2 \mathrm{fl} \mathrm{oz} \mathrm{(A)......}$.	56.6	abc	18.5	a	5.3	a-g	39.5	b-f	10.3	c-h	72.5	c-f
Vertisan 1.67EC $0.4 \mathrm{fl} \mathrm{oz} \mathrm{(B)......}$.					2.5	fg	29.0	c-g	10.1	c-h	81.5	a-e
Vertisan 1.67EC $0.8 \mathrm{fl} \mathrm{oz} \mathrm{(B).....}$.					7.5	a-e	28.5	d-g	8.9	e-h	86.0	abc
Vertisan 1.67EC $1.2 \mathrm{fl} \mathrm{oz} \mathrm{(B).....}$.					8.0	a-d	35.5	b-g	12.5	b-g	74.5	b-f
Vertisan 1.67EC $0.8 \mathrm{fl} \mathrm{oz} \mathrm{(A);}$												
Vertisan 1.67EC $0.8 \mathrm{fl} \mathrm{oz} \mathrm{(B)......}$.	57.7	abc	18.6	a	2.0	fg	42.5	bcd	17.8	b	67.5	ef
Quadris 2.08FL $0.6 \mathrm{fl} \mathrm{oz} \mathrm{(A)........}$.	64.9	abc	21.1	a	3.5	c-g	34.5	b-g	12.6	b-g	77.5	b-e
Quadris 2.08FL $0.6 \mathrm{fl} \mathrm{oz} \mathrm{(B).......}$.					1.8	g	22.5	g	6.4	gh	88.0	ab
Moncut 70DF 0.24 oz (A)...........	58.9	abc	17.5	a	2.3	fg	38.0	b-g	16.3	bc	75.0	b-f
Moncut 70DF 0.37 oz (A)...........	58.2	abc	18.5	a	3.8	c-g	38.0	b-g	11.1	b-h	77.5	b-e
Moncut 70DF 0.74 oz (A)...........	69.1	ab	22.6	a	9.3	a	28.5	d-g	10.6	c-h	81.0	a-e
Moncut 70DF 0.48 oz (B)...........					3.3	d-g	26.5	$\mathrm{d}-\mathrm{g}$	8.1	gh	88.0	ab
Moncut 70DF 0.74 oz (B)...........					3.3	d-g	49.5	b	15.7	b-e	62.5	f
Moncut 70DF $0.24 \mathrm{oz} \mathrm{(A);}$												
Moncut 70DF 0.48 oz (B)...........	50.7	bc	18.6	a	2.8	efg	29.0	c-g	7.9	gh	88.5	ab
Priaxor 4.17SC $0.34 \mathrm{fl} \mathrm{oz} \mathrm{(A).....}$.	54.6	abc	19.4	a	6.5	a-g	28.0	d-g	8.8	fgh	83.0	a-d
Priaxor 4.17SC $0.46 \mathrm{fl} \mathrm{oz} \mathrm{(A).....}$.	48.6	c	17.7	a	2.8	efg	25.0	efg	9.4	d-h	79.5	a-e
Priaxor 4.17SC $0.34 \mathrm{fl} \mathrm{oz} \mathrm{(B)......}$.					5.0	a-g	37.5	b-g	15.0	b-f	74.5	b-f
Priaxor 4.17SC $0.46 \mathrm{fl} \mathrm{oz} \mathrm{(B)......}$.					5.0	a-g	31.5	c-g	9.2	d-h	77.5	b-e
Priaxor 4.17SC $0.46 \mathrm{fl} \mathrm{oz}(\mathrm{A}, \mathrm{B}) \ldots .$. ActinoGrow 0.0371WP 0.34 oz (A)	63.6	abc	20.6	a	4.0	b-g	45.0	bc	16.6	bc	62.5	f
ActinoGrow 0.0371WP 0.46 oz (B)	71.3	ab	23.8	a	4.3	b-g	36.0	b-g	12.4	b-h	76.0	b-f
Topsin-M 70WP 1.84 oz (B).........					9.3	a	41.0	b-e	15.9	bcd	70.5	def
Serenade Soil 1.34SC $2.9 \mathrm{fl} \mathrm{oz} \mathrm{(A)}$.	62.0	abc	21.2	a	6.8	a-f	24.0	fg	8.8	fgh	82.5	a-d
Serenade Soil 1.34SC $5.5 \mathrm{fl} \mathrm{oz} \mathrm{(A)}$.	56.1	abc	17.9	a	4.5	a-g	30.0	c-g	11.6	b-h	82.0	a-e
Proline 480SC $0.33 \mathrm{fl} \mathrm{oz} \mathrm{(B).......}$.					4.0	b-g	37.5	b-g	11.3	b-h	77.5	b-e
Inoculated Check....................					6.0	a-g	79.5	a	25.2	a	44.5	g
Untreated Check..	56.1	abc	18.0	a	8.3	abc	22.5		5.6	h	93.5	a

${ }^{a}$ Plant stand expressed as a percentage of the target population of 275 plants/ 100 ft . row from a sample of $2 \times 50 \mathrm{ft}$ rows per plot.
${ }^{\mathrm{b}}$ DAP = days after planting on 4 Apr.
${ }^{\text {c }}$ Relative area under the emergence progress curve from planting to 35 days after planting.
${ }^{\mathrm{d}}$ Severity of crown and root rot was measured as an index calculated as described in the text.
${ }^{\mathrm{e}}$ Application dates; A=4 Apr; B= 10 May.
${ }^{\mathrm{f}}$ Means followed by same letter are not significantly different at $\mathrm{P}=0.05$ (Fishers LSD).

2.55	a	21.73	a	62	abc	21.17	a
1.91	a	16.09	a	56.09 abc	17.89 a		

2012 DRY BEAN YIELD TRIALS

J.D. Kelly, E. Wright, N. Blakely, and J. Heilig
Plant, Soil and Microbial Sciences

The bean breeding program initiated its fourth season on the new 320 acre research farm, Saginaw Valley Research \& Extension Center (SVREC) near Frankenmuth in 2012. A total of 3,900 yield trial plots (24 tests) in 2012 and 1,977 single plant selections were made in the early generation nurseries. Yield trials at SVREC (Richville) included 56-entry standard navy test; two 36-entry standard black tests; 80-entry prelim navy tests; 42 -entry prelim black test; 36 -entry standard GN; 36 -entry standard pinto test; 30 -entry standard red/pink test; 16 -entry prelim GN test; 90 -entry prelim red/pink test; 16-entry FM test; 16-entry yield gain navy test; 20-entry yield gain pinto test; two 96entry drought trials and 42-entry Co-op and regional test that includes pinto, GN, red and pinks. At Montcalm 64-entry bush cranberry test; 56-entry kidney test; 56-entry preliminary kidney test; 5entry mayacoba test; 64-entry white mold test; 130-entry nitrogen fixation (BNF) test on campus; and two 36-entry certified organic trials in Tuscola county. All trials were direct harvested except for kidney, cranberry, drought, BNF and white mold trials that were rod pulled to measure plant biomass. Dry weather early in the season followed by ample rainfall delayed maturity at Frankenmuth but yields were above average. Plots at Montcalm had similar rainfall pattern but the stress was offset with supplemental irrigation and excellent yields were recorded in the kidney and cranberry trials. Screening for resistance to common bacterial blight (CBB) was very effective in these nurseries. White mold infection developed well in 2012 and genotypic differences were observed. Yield in cranberry beans approached 40 cwt and many lines with resistance to CBB were identified in both kidney and cranberry nurseries. Rust is becoming an increasing threat to navy, black and small red bean producers in Michigan, and we have identified resistance to race 22:2 in new navy, black and small red bean lines. In the drought and BNF trial plant biomass was determined on all plots prior to threshing. Root measurements were taken on the drought plots in Frankenmuth at flowering by digging plants and following protocol termed Shovelomics to measure root diameter, angle and vigor traits that may play a role in tolerating drought.

The season in Frankenmuth started out with limited rainfall following planting and only 0.2 " fell during the first month through early July. Two sustaining rains of approximately 0.5 " fell on July 3 and 18 , followed by a major 2.0 " rain on July $26 / 27$. The crop maker was a rain of 2.4 " on Aug 10/11which resulted in an overall summer rainfall of 2.53 " lower than the 30 -year average. The drought reversed maturities with full-season black and navy beans maturing ahead of pinto and great northerns. As a result of the early drought, many of the early-season lines double-set, whereas the longer-season blacks and navies matured normally ahead of pinto, and great northern trials. Many of the pinto, great northern and small red lines lost upright plant structure as a result of the regrowth making them difficult to harvest and reducing yields. The pink lines matured normally under these conditions and out-yielded the small red lines. Plots at Montcalm had more rainfall but the stress was offset with supplemental irrigation and excellent yields over $35 \mathrm{cwt} /$ acre were recorded in the kidney and cranberry trials. White mold infection developed well in 2012 and exceeded the low levels observed in 2011.

The data for all tests are included in an attached section. Procedures and details on nursery establishment and harvest methods are outlined on the first page. Since the data collected on each test are basically the same, a brief discussion of each variable measured is presented below for clarification purposes.

1. Yield is clean seed weight reported in hundredweight per acre (cwt/acre) standardized to 18% moisture content. Dry beans are commercially marketed in units of 100 pounds (cwt).
2. Seed weight is a measure of seed size, determined by weighing in grams a pre-counted sample of 100 seeds, known as the 100 -seed weight. To convert to seeds per 100 g ($10,000 / 100$ seed wt); for example 100 -seed weight of 50 converts to 200 seeds per 100 g (used in marketing).
3. Days to flower is the number of days from planting to when 50% of plants in a plot have one or more open flowers.
4. Days to maturity is the actual number of days from planting until date when all the plants in a plot have reached harvest maturity.
5. Lodging is scored from 1 to 5 where 1 is erect while 5 is prostrate or 100% lodged.
6. Height is determined at physiological maturity, from soil surface to the top of plant canopy, and is recorded in centimeters (cm).
7. Desirability score is a visual score given the plot at maturity that takes into consideration such plant traits as; moderate height, lodging resistance, good pod load, favorable pod to ground distance, uniformity of maturity, and absence of disease, if present in the nursery. The higher the score (from 1 to 9) the more desirable the variety, hence DS serves as a subjective selection index.

At the bottom of each table, the mean or average of all entries in a test is given to facilitate comparisons between varieties. In order to better interpret data, certain statistical factors are used. The LSD value refers to the Least Significant Difference between entries in a test. The LSD value is the minimum difference by which two entries must differ before they can be considered significantly different. Two entries differing in yield by 1 cwt /acre cannot be considered as performing significantly different if the LSD value is greater than $1 \mathrm{cwt} / \mathrm{acre}$. Such a statement is actually a statement of "probable" difference. We could be wrong once in 20 times ($\mathrm{p}=0.05$) on the average, depending on the level of probability. The other statistic, Coefficient of Variation (CV), indicates how good the test was in terms of controlling error variance due to soil or other differences within a location. Since it is impossible to control all variability, a CV value of 10% or less implies excellent error control and is reflected in lower LSD values. Under the pedigree column, all released or named varieties are bolded and always preceded by a comma (,); when preceded by a slash (/), the variety was used only as a parent to produce that particular breeding line.

Expt. 2101: Standard Navy Bean Yield Trial

This 56-entry trial included standard commercial navy bean varieties, and advanced lines from the MSU breeding program, which carry the N-prefix. Yields ranged from 16.9 to 28.4 cwt/acre with a mean of $23.2 \mathrm{cwt} /$ acre. The trial was fairly uniform and variability was well controlled (CV=11.7\%) and the LSD needed for significance was $3.2 \mathrm{cwt} / \mathrm{acre}$. Seven entries significantly out-yielded the test mean and included the Merlin variety from Coop Elevator. The group included N11283 that showed potential in 2011 and continues to perform well as did its sib N11284. Other lines of note are an early season line N11277 that dried down well. Varieties Rexeter, Medalist, Vista and Indi were all mid pack in terms of performance. Canning tests will be conducted on all MSU breeding lines before being considered for release. Overall performance of this test was disappointing compared to other seed classes as many of the lines did not mature well, remained green and exhibited the seed and pod infertility problem associated with the 'green spot' syndrome in this section of the farm.

Expt. 2102: Standard Black Bean Yield Trial

This 36 -entry trial included the standard commercial black bean varieties and advanced breeding lines. Yields ranged from 24.1 to $35.6 \mathrm{cwt} /$ acre with a test mean of $31 \mathrm{cwt} / \mathrm{ccre}$, significantly exceeding the yield potential of the advanced navy trial 2101. Variability was low in this test, ($\mathrm{CV}=7.5 \%$) and the LSD was $2.7 \mathrm{cwt} /$ acre. Seven entries significantly outyielded the test mean and these included Loreto. Zorro fell outside this group but was significantly higher yielding that Jaguar, Eclipse, Shania, Black Velvet, and T-39. The top yielding entry B10244 was the top yielder in 2011 and showed similar potential in 2012 with excellent combination of erectness, dry down and superior canning quality.

Expt. 2103: Standard Black Bean Yield Trial

This 36-entry trial included newer B11-black bean lines and check varieties compared to older entries in test 2102. Yields ranged from 23.2 to $34.5 \mathrm{cwt} /$ acre with a mean of $28.9 \mathrm{cwt} / \mathrm{acre}$. Variability was low in this test ($\mathrm{CV}=7.6 \%$) and the LSD was $2.6 \mathrm{cwt} /$ acre. Six lines significantly outyielded the test mean and these included Zorro which significantly outyielded Eclipse and Shania. The MSU lines have low DS scores but they carry additional disease resistance for CBB, rust and anthracnose so future advances of many of these lines will largely depend on canning quality of the entries.

Expt. 2104: Preliminary Navy Bean Yield Trial

This 80-entry trial included new navy bean lines and check varieties. Yields ranged from 15.1 to 34.1 $\mathrm{cwt} / \mathrm{acre}$ with a mean of $23.8 \mathrm{cwt} / \mathrm{acre}$. Variability was low in this 3-rep test ($\mathrm{CV}=7.7 \%$) and the LSD was $2.5 \mathrm{cwt} /$ acre and overall yields were better than advanced navy trial 2101. Twenty-five lines including Merlin and Indi significantly outyielded the test mean. Vista and Medalist were equivalent to the test mean. The top yielding entry was N11283 that was almost 3 cwt better than the second entry, underscoring its yield potential. It was 11 cwt better than its parent, Medalist. Future advances of many of the new breeding lines will largely depend on disease reactions and canning quality of the entries.

Expt. 2105: Preliminary Black Bean Yield Trial

This 42-entry trial included new black bean lines and check varieties. Yields ranged from 17.2 to $32.1 \mathrm{cwt} /$ acre with a mean of $25.7 \mathrm{cwt} / \mathrm{acre}$. Variability was moderate in this 3-rep test ($\mathrm{CV}=10.6 \%$) and the LSD was $3.7 \mathrm{cwt} / \mathrm{acre}$. Ten lines significantly outyielded the test mean and the top yielding entry B10244 was the same entry in test 2102 . The two top entries were older lines not the newer lines with B12-prefix. Interestingly three groups of sibs fell in this group suggesting their high yield potential and consistent performance. The two checks, Shania and Zorro were similar in the mid group. Many of these lines carry anthracnose resistance but future advances of any new breeding lines will largely depend on confirmation of disease reactions and canning quality of the entries.

Expt. 2106: Navy Bean Genetic Gain Yield Trial

This small 16-entry trial included a group of old and new navy bean varieties to compare yield gain over the last century. Yields ranged from 17.4 to $26.8 \mathrm{cwt} / \mathrm{acre}$ with a mean of $22.9 \mathrm{cwt} / \mathrm{acre}$. Variability was low in this test (CV=8.5\%) and the LSD was $2.8 \mathrm{cwt} /$ acre. Five lines significantly outyielded the test mean and included only varieties released since 1982. The mid group included varieties with a mixed history from Michelite (1938) to T9905 (mid 2000s). The last group had many determinate varieties but the major surprise was the overall poor performance of Avalanche released in 2010 in North Dakota.

Expt. 2107: Standard Great Northern Bean Yield Trial

This 36-entry trial included MSU great northern breeding lines (G-prefix) and standard commercial check varieties. The test ranged in yield from 14.0 to $32.1 \mathrm{cwt} /$ acre with a mean yield of $25 \mathrm{cwt} / \mathrm{acre}$. Variability was moderate ($\mathrm{CV}=10.6 \%$) resulting in a high LSD value ($3.1 \mathrm{cwt} /$ acre) needed for significance. Seven breeding lines significantly outperformed the test mean and included breeding line
G08254 under consideration for release. The second entry G08254 has been a top performer over the last four years and also significantly out-yielded the check variety Matterhorn which yielded similar to the test mean. In prior years a large number of lines exhibited severe 'fish-mouth' seed damage making them commercially unacceptable. This seed condition was not as obvious in 2012, but only those entries with larger seed size, improved dry seed quality and cracking resistance better than Matterhorn will be advanced in 2013. Similar to 2011, the maturity of GN lines was delayed due to the dry conditions and plants grew more vegetatively and lost some of their upright growth habit, exhibiting higher lodging scores (2.5-3.0) in 2012.

Expt. 2108: Standard Pinto Bean Yield Trial

This 36-entry trial included standard commercial pinto bean varieties and advanced breeding lines from the MSU breeding program with the P-prefix. The trial ranged in yield from 16.2 to 35.0 cwt/acre with a mean of 28.1 cwt /acre. Variability was low ($\mathrm{CV}=9.5 \%$) in this trial and the LSD needed for significance was $3.1 \mathrm{cwt} / \mathrm{acre}$. Nine entries significantly out-yielded the test mean and
these included the varieties Eldorado, La Paz, and Medicine Hat. Eldorado formerly tested as P07863 was the highest yielding pinto in the white mold trials in Montcalm in 20072008 and 2009 was $2^{\text {nd }}$ in this test in 2010 and $1^{\text {st }}$ in 2011. Pinto PT8-6 ranked second and shows potential. Other varieties Lariat exceeded the test mean whereas Santa Fe yielded at the bottom of the test Only those highyielding entries with more upright architecture and canning quality equivalent to Othello will be advanced in 2012.

Expt. 2109: Standard Pink and Small Red Bean Yield Trial

This 30-entry trial included small red and pink breeding lines from MSU (R-S-prefix), in addition to standard commercial check varieties. The test ranged in yield from 21.6 to 31.4 cwt acre with a mean yield of $26.7 \mathrm{cwt} /$ acre. Variability was moderate ($\mathrm{CV}=10.2 \%$) due to direct harvesting resulting in a LSD value ($3.2 \mathrm{cwt} / \mathrm{acre}$) for significance. Only four breeding lines including new Rosetta variety significantly outperformed the test mean. Sedona pink yielded above the test mean whereas, small red variety Merlot yielded significantly below the test mean. Merlot had an overall poor performance year combined with delayed maturity in many locations similar to 2011. Included in the test was the new small red variety Rio Rojo from NDSU that also performed below the test mean. The majority of small red lines were lower yielding and lack the canning quality of Merlot. Progress in small red breeding program has been limited by lack of useful variability.

Expt. 2110: Flor de Mayo, Flor de Junio Bean Yield Trial

This small 16-entry trial included new upright flor de mayo (FM) and flor de junio (FJ) bean lines along with check variety FM Eugenia from Mexico. This is the second year for this trial with FM/FJ lines bred for adaptation, upright architecture, yield and suitability for local production. Yields ranged from 18.3 to $33.6 \mathrm{cwt} /$ acre with a mean of $25.1 \mathrm{cwt} /$ acre. Variability was moderate in this 3rep test ($\mathrm{CV}=15.3 \%$) and the LSD was $5.4 \mathrm{cwt} / \mathrm{acre}$. As a result only one FJ line significantly outyielded the test mean and it showed the overall best architecture traits. Lodging was very significant in this test as the plants produced excessive vegetative growth caused by the early season drought. The variety Eugenia was planted as a check for seed type and quality but it yielded at the bottom of the trial due in large part to poor adaptation. A few of top FJ/FM lines exhibited improved upright architecture, good dry down and high DS scores and future advances of these lines will largely depend on disease reactions, particularly to BCMV and the preferred color patterns of the dry FM/FJ seed.

Expt. 2111: Preliminary Great Northern and Otebo Bean Yield Trial

This small 16-entry trial included new great northern bean lines and otebo lines along with check varieties. Yields ranged from 16.0 to $31.5 \mathrm{cwt} /$ acre with a mean of $24.3 \mathrm{cwt} / \mathrm{acre}$. Variability was moderate in this 3-rep test ($\mathrm{CV}=10.3 \%$) and the LSD was $3.5 \mathrm{cwt} /$ acre. Four lines significantly outyielded the test mean and these included three sibs from the same cross. New otebo lines in the G12900 series fell in the second group along with the Matterhorn check. These lines significantly outyielded the Fuji check variety. Future advances of many of the new breeding lines will largely depend on disease reactions and canning quality of the entries.

Expt. 2112: Preliminary Red and Pink Bean Yield Trial

This 90-entry trial included new small red and pink bean lines along with check varieties bred to ensure they had adequate levels of resistance to BCMV. Yields ranged from 10.3 to 36.7 cwt /acre with a mean of 29.1 cwt /acre. Variability was moderate in this 3-rep test ($\mathrm{CV}=10.5 \%$) and the LSD was $4.1 \mathrm{cwt} / \mathrm{acre}$. Sixteen lines significantly out-yielded the test mean including the new pink variety, Rosetta and top yields at or above 35cwt were exceptional. Both checks Merlot and Sedona yielded below the test mean and Rio Rojo yielded above the test mean. This is the second season that Merlot has underperformed. The early drought in both years appears to have had a negative effect on Merlot, causing it to abort flowers, re-green, re-flower but never fully recover compared to other varieties. A number of top lines exhibited nice upright architecture, good dry down and high DS scores and future advances of many of the new breeding lines will largely depend on their reaction to BCMV, seed quality, color and canning quality of the entries.

Expt. 2113: Pinto Bean Genetic Gain Yield Trial

This small 20-entry trial included a group of old and new pinto bean varieties to compare yield gain over the last century. Yields ranged from 13.7 to $35.7 \mathrm{cwt} /$ acre with a mean of $27.0 \mathrm{cwt} / \mathrm{acre}$. Variability was low in this test (CV=9.7\%) and the LSD was $3.6 \mathrm{cwt} / \mathrm{acre}$. Six lines significantly outyielded the test mean and included a combination of both old and new varieties released since 1940s. The group included both old vine type-III and upright type-II varieties such as Lariat and Stampede. The mid group included varieties with a mixed history from the landrace common pinto to Sierra, first upright type-II (1989) and many of widely grown early-season varieties such as Othello. The major surprise was the overall poor performance of Buster which has been a consistent high performer over the years.

Expt. 2114: Combined Midwest Regional Performance Nursery (MRPN) \& Cooperative Dry Bean Nursery (CDBN) Yield Trial

The MRPN is conducted annually in cooperation with North Dakota (ND-prefix), Nebraska (NEprefix) and Colorado (CO-prefix) in order to test new pinto and great northern lines from all four programs and assess their potential in the different regions. The CDBN is a national trial and includes all classes but only medium-sized entries were included in this trial. The 42-entry trial ranged in yield from 16.1 to $36.0 \mathrm{cwt} /$ acre with a mean of $25.2 \mathrm{cwt} / \mathrm{acre}$. Variability was moderate ($\mathrm{CV}=10.6 \%$) resulting in a LSD value ($3.6 \mathrm{cwt} / \mathrm{acre}$) for significance. As a result only five lines were significantly higher in yield than the test mean including the two new MSU varieties, Eldorado and Rosetta. Eldorado was the top yielding entry on the research farm in 2012. The top yielding entries were all pintos except Rosetta and included breeding line P08161 a line selected for resistance to potato leafhoppers. In the top group were pinto lines PT9-6 and a CO line from Colorado. The two new varieties Longs Peak pinto from Colorado and Rio Rojo from NSDU performed below the test mean. The longer-season vine cranberry varieties Bellagio were among the lowest yielding entries and do not perform at the level of pintos or great northern beans. As in test 2113, Buster was the lowest yielding entry suggesting that it does not tolerate drought stress. This cooperative trial continues to be valuable as it allows an evaluation of potential new lines prior to release in other states and confirmed performance of new MSU varieties released in 2012.

Expts. 2115 \& 2116: BeanCAP Drought Yield Trials

Two 96-entry trials were conducted side by side one was irrigated and the other received only rainfall reported earlier in this report. The purpose of the trial was to evaluate drought stress on performance and root traits of diverse group of genotypes. Agronomic, yield, harvest index and root data were collected on both trials. The study is part of student research project supported by Beancap and USDA-NIFA grant. In the non irrigated trial, yields ranged from 14.2 to $36.7 \mathrm{cwt} /$ acre with a mean of $27.3 \mathrm{cwt} / \mathrm{acre}$. The trial was fairly uniform and variability was well controlled in this 3-rep test ($\mathrm{CV}=10.9 \%$) and the LSD needed for significance was $4.0 \mathrm{cwt} / \mathrm{acre}$. Fifteen entries significantly outyielded the test mean and included varieties such as Eldorado, Kodiak, Medicine Hat, La Paz, Lariat, Orion, Shania and Othello two breeding lines PT7-2 and PR0340-3-3-1. The irrigated trial received supplemental water from two irrigations totaling 0.9 " ($7 / 23$ and $8 / 3$) and yields ranged from 16.3 to $34.1 \mathrm{cwt} / \mathrm{acre}$ with a mean of $26.0 \mathrm{cwt} /$ acre. The trial was less uniform and variability in this 3-rep test was slightly higher ($\mathrm{CV}=11.2 \%$) and the LSD needed for significance was $3.9 \mathrm{cwt} / \mathrm{acre}$. Eleven entries significantly out-yielded the test mean and included some of the varieties such as Medicine Hat, La Paz, Lariat, Orion, PT7-2 and PR0340-3-3-1 with the addition of Buster, Merlot, Sierra, and Domino. The major surprise was the higher performance in the non irrigated trial again suggesting that the delayed rainfall was sufficient to produce a successful bean crop.

Expts. 2917 \& 2918: Organic Dry Bean Yield Trials

Two 36-entry navy and black trials were conducted on certified organic grower farms under organic production systems, with no fertilizer, no chemical seed treatments or weed or insect control, no harvest aid chemicals using seed inoculated with native Rhizobium to evaluate new breeding lines, and current varieties for potential production under this management system. Weeds were a major problem in test 2917 and part of the plot was damaged by flooding; insect (potato leaf hopper- PLH) damage was observed in both trials. In test 2917, yields ranged in yield from 4.2 to 24.9 cwt /acre with a mean of 15.1 cwt/acre. Variability was high ($\mathrm{CV}=20.8 \%$) resulting in a LSD value (4.3 $\mathrm{cwt} / \mathrm{acre}$) for significance. Only five lines were significantly higher in yield than the test mean and this included the variety, Shania. In test 2918, yields ranged in yield from 6.1 to 18.1 cwt /acre with a mean of $13.3 \mathrm{cwt} /$ acre. Variability was high ($\mathrm{CV}=18.2 \%$) resulting in a LSD value ($2.8 \mathrm{cwt} / \mathrm{acre}$) for significance. Only four lines were significantly higher in yield than the test mean and only one line B11302 was repeated in both tests. Vista was the better navy bean variety and Shania was the better black bean check variety. The non-nodulating check R99 that cannot fix nitrogen yielded less than 10 cwt in both tests again suggesting that nitrogen is a limiting factor under this management system. A group of high nitrogen fixating lines derived from Puebla 152 was included, but none of these lines showed potential and the group included the lowest yielding entry B11552 in both tests. Since organic growers may choose to save seed as organic seed is not widely available, resistance to seedborne CBB would be an important criterion in their selection of bean varieties to grow. A number of the entries in this trial have high levels of resistance to CBB. The trial will be repeated in 2013 with a different mix of breeding lines.

Expt. 2219: Standard Kidney Bean Yield Trial

This 56-entry trial was conducted on the Montcalm Research Farm to compare the performance of standard and new light red kidney (LRK), dark red kidney (DRK) and white kidney (WK) bean varieties from MSU and CDBN under supplemental irrigation (7 x total 3.75 "). Part of the trial was damaged by flooding which reduced stands in the mid section of the trial, so a representative sample of 50 plants in each plot was harvested to determine yields. Yields ranged from 15.9 to 40.6 cwt /acre with a mean of $27.3 \mathrm{cwt} /$ acre. Variability was moderate ($\mathrm{CV}=15 \%$) resulting in a large LSD value ($5.6 \mathrm{cwt} /$ acre) needed for significance. Eleven breeding lines significantly out-yielded the test mean, including seven WK and 3 DRK lines and the new white kidney variety Snowdon. White kidney lines continue to out-yield red kidney lines in this trial with yields in excess of 35cwt, whereas the highest yielding LRK lines ranked just outside the top group. Varieties that yielded above the test mean included vine DRK Majesty, Red Hawk and Montcalm whereas Clouseau and Chinook LRK and Beluga WK were below the mean. One of the positive aspects of this trial was the high level of resistance to CBB in the higher yielding entries. Eleven of top 15 entries had CBB scores less than 2.0 compared to value of 5.0 for the CELRK check. A number of large seeded fabada types with seed size above 65 g were identified and one line K11939 fell in the top group. Since canning quality is vital in kidney beans, only those DRK lines equivalent in canning quality to Red Hawk, LRK lines equal or better than CELRK and WK lines equivalent to Beluga will be advanced in 2013.

Expt. 2220: Standard Bush Cranberry Bean Yield Trial

This 64-entry trial was conducted on the Montcalm Research Farm to compare new and standard bush cranberry bean varieties under supplemental irrigation (7 x total 3.75 "). Yields ranged from 9.6 to $39 \mathrm{cwt} /$ acre with a mean of $27.3 \mathrm{cwt} /$ acre. Variability was moderate ($\mathrm{CV}=11.5 \%$) in this 3 -rep test and the LSD needed for significance was high ($4.3 \mathrm{cwt} / \mathrm{acre}$). Twelve lines significantly out-yielded the test mean, but the overall seed size was generally smaller than the Etna check (60 g). CBB was rated on $1-5$ scale and ranged from low of 1.3 to high of 5.0 many of the high-yielding lines expressed high levels of resistance and had values less than 2.0. Check variety Etna had a score of 5.0 and yielded at the test mean while Capri yielded below the test mean. The lowest yielding entry UCD0801 from California was not adapted. The trial represented a broad array of genotypes with different genetic background and a wide range in maturity, lodging resistance and yield potential among entries. Only those entries equivalent to Capri in seed size with improved yield, earlier maturity and canning quality will be advanced in 2013.

Expt. 2221: Preliminary Kidney Bean Yield Trial

This 56-entry trial was conducted on the Montcalm Research Farm to compare new and standard bush cranberry bean varieties under supplemental irrigation (7 x total 3.75 "). Yields ranged from 18.7 to $36.3 \mathrm{cwt} /$ acre with a mean of $27.3 \mathrm{cwt} /$ acre. Variability was moderate $(\mathrm{CV}=13.6 \%)$ in this 3 -rep test and the LSD needed for significance was high ($5 \mathrm{cwt} / \mathrm{acre}$). Nine lines significantly out-yielded the test mean and the top entry was Snowdon. The top group included four WK, 3 DRK and one LRK line. The DRK lines were early maturing and showed good dry down a trait not common in DRK seed class. Seed size was generally smaller in many of the top yielding entries with the
exception of Snowdon (66 g). CBB was rated on $1-5$ scale and ranged from low of 1.5 to high of 5.0 indicating that many lines with values less than 2.0 had high levels of resistance. Similar to test 2220, Red Hawk and Montcalm yielded above the test mean, whereas Clouseau and Beluga yielded below the mean. Only those entries with improved yield and equivalent to Beluga and Red Hawk in seed size, earlier maturity and canning quality will be advanced in 2013.

Expt. 2222: Mayacoba Bean Yield Trial

This is the second year of testing this small 5-entry trial on the Montcalm Research Farm to identify potential new bush mayacoba (yellow) bean varieties that might be suited for production in Michigan. Yields ranged from 15.4 to 16.1 cwt /acre with a mean of $15.8 \mathrm{cwt} / \mathrm{acre}$. Variability was high ($\mathrm{CV}=19.9 \%$) in this 3-rep test and the LSD needed for significance was high ($4.8 \mathrm{cwt} / \mathrm{acre}$). As a result no lines significantly exceeded the test mean, largely as the result of high level of CBB infection. The lines under test were more erect than the Myasi check and all produced a significantly larger seed (46 vs. $36 \mathrm{~g} / 100$ seeds). The low productivity of the lines in the trial underscores the difficulty of identifying a high yielding mayacoba seed for production in Michigan. Only those entries that retain and exhibit a bright yellow seed color under local conditions will be advanced in 2013.

Expt. 2223: National White Mold Variety Yield Trial

This 64-entry trial was conducted at Montcalm to evaluate a range of diverse dry bean varieties and breeding lines for reaction to white mold under natural field conditions. Genotypes included commercial navy and black bean cultivars, elite MSU lines, and new sources of white mold resistance entered as part of the National Sclerotinia Initiative (NSI) Nursery. Lines in the National trial were developed at MSU, OSU, CSU, Cornell, NDSU and USDA-WA. Entries were planted in two row plots with two rows of susceptible spreader variety Matterhorn between plots. Supplemental overhead irrigation was applied 9 times for a total of 4.75 " to maintain adequate levels of moisture for favorable disease development at the critical flowering period. Natural white mold infection occurred across the entire trial and was extremely severe in certain plots. White mold was rated on a per plot basis on a scale of 1 to 9 based on disease incidence and severity where 9 had $90+\%$ incidence and high severity index. White mold ranged from 18.5 to 99% and pressure was high compared to 2011. The test ranged in yield from 16.1 to $42.9 \mathrm{cwt} /$ acre with a mean yield of 29.1 $\mathrm{cwt} / \mathrm{acre}$. Variability was moderate ($\mathrm{CV}=14.2 \%$), thus a high LSD value ($5.6 \mathrm{cwt} / \mathrm{acre}$) was needed for significance. As a result eleven lines significantly out-yielded the test mean and included the new variety, Eldorado, and La Paz pinto varieties. The top group included new pinto 37-2 from USDAWA for the third year and for the second year the new small red line ND080547 from NDSU was in the top group. Eldorado, top yielder in 2007, 2008 and 2009 continues to demonstrate superior yield performance under white mold pressure with low score (22.2%). For the first time, two GN lines fell in the top group included G08254 under consideration for release, whereas Matterhorn fell below the test mean with a white mold incidence of 66%. Included in trial were entries coded TL and TW that were previously identified as tolerant to white mold and these also continued to show good tolerance and yield potential. As in past years pintos and reds dominated the entries at the top of trial, followed by blacks, navy and pink lines and large seeded kidney were among the lowest yielding in the test. This was the third year that some of entries in NSI trial yielded above the test mean as many of the standard entries from NSI trial were among the lowest yielding lines in the past. Past experience using low-yielding white mold resistant germplasm as parents has not proved useful in breeding for
white mold resistance. Overall the trial confirmed results from previous years (susceptible checkBeryl rated 99% WM) and this trial will continue to be part of the breeding effort to improve tolerance to white mold.

Expt. 2425: Biological Nitrogen Fixation - BNF Yield Trial

A single 130-entry trial was conducted in East Lansing to measure nitrogen fixation and yield of RIL population grown in a low $\mathrm{N}(0.03 \%$; normal range $0.05-0.1 \%)$ site as only those lines that fix more N will produce more yield under these conditions. The black bean population was developed from cross of Zorro with Puebla 152 line selected as a high nitrogen fixer. Yield ranged from 3.5 to 26.5 $\mathrm{cwt} /$ acre with a mean of $17.9 \mathrm{cwt} /$ acre. Variability was high ($\mathrm{CV}=17.5 \%$), and a LSD value of 4.2 $\mathrm{cwt} / \mathrm{acre}$ was needed for significance. As a result fourteen lines significantly exceeded test mean and these lines exceeded the performance of the Zorro parent and check varieties. The top yielding entry ranked $8^{\text {th }}$ in the same trial in 2011, but none of the other top-ten entries in 2011 repeated in 2012. One unexpected surprise was the presence of R99 in the top group. The trial was severely stressed due to the extreme drought in 2012 (July-Sept rainfall was 5.72" compared to normal 9.6" for the same period); in addition secondary problems of severe spider mite damage in sections of the field, selective feeding by deer and ground hogs exacerbated the problem. These problems are reflected in the low yields and high CV values. At harvest plant biomass was also recorded to measure harvest index (HI). Harvest index ranged from low of 6% in lowest yielding unadapted entries to 40% in higher yielding entries and these values were lower than in past years. The lower yielding entries tended to be late maturing entries combined with viney prostrate types that did not partition into the seed, hence lower HI. There is a strong correlation between HI and yield and results are similar to those observed in the Beancap drought trials 2115 and 2116. Selecting for high yield must be accompanied with partitioning into the seed. Bean lines with enhanced BNF would be useful trait for organic bean producers who cannot apply conventional fertilizers to increase yield.

Early Generation Breeding Material grown in Michigan in 2012

F3 through F5 lines

Navy and Black - 406 lines, 224 SSD
Pinto - 66 lines
GN - 158 lines
Pinks and Reds - 300 lines, 176 SSD
Kidneys (DR, LR, White) - 157 lines
Cranberry (bush, vine) - 193 lines
Yellow Eye - 14 lines

F2 populations

Navy and Black -219 populations Pinto - 64 populations
GN - 60 populations
Pinks and Reds - 87 populations Kidneys (DR, LR, White) - 95 populations Cranberry (bush, vine) - 5 populations

F1 populations: 498 different crosses among ten contrasting seed types.

EXPERIMENT TITLE P	PLANTING DATE	LOCATION E		ENTRIES	DESIGN		REPS	HARVEST	METHOD
2101 STANDARD NAVY BEAN YIELD TRIAL	06/06/12	SVR \& EC	FRANKENMUTH	H 56	REC.	LATTICE	4	DIRECT	HARVESTED
2102 STANDARD BLACK BEAN YIELD TRIAL-1	06/06/12	SVR\&EC	FRANKENMUTH	H 36	SQ.	LATTICE	4	DIRECT	HARVESTED
2103 STANDARD BLACK BEAN YIELD TRIAL-2	06/06/12	SVR\&EC	FRANKENMUTH	H 36	SQ.	LATTICE	4	DIRECT	HARVESTED
2104 PRELIMINARY NAVY BEAN YLD TRIAL	06/06/12	SVR\&EC	FRANKENMUTH	H 80	ALPHA	LATTICE	3	DIRECT	HARVESTED
2105 PRELIMINARY BLACK BEAN YLD TRIAL	06/06/12	SVR\&EC	FRANKENMUTH	H 42	REC.	LATTICE	3	DIRECT	HARVESTED
2106 NAVY GENETIC GAIN YLD TRIAL	06/06/12	SVR\&EC	FRANKENMUTH	H 16	SQ.	LATTICE	3	DIRECT	HARVESTED
2107 STANDARD GREAT NORTHERN YLD TRIAL	$06 / 07 / 12$	SVR\&EC	FRANKENMUTH	H 36	SQ.	LATTICE	4	DIRECT	HARVESTED
2108 STANDARD PINTO BEAN YIELD TRIAL	$06 / 07 / 12$	SVR\&EC	FRANKENMUTH	H 36	SQ.	LATTICE	4	DIRECT	HARVESTED
2109 STANDARD PINK \& SMALL RED YLD TRIAL	06/07/12	SVR\&EC	FRANKENMUTH	+ 30	REC.	LATTICE	4	DIRECT	HARVESTED
2110 PRELIM. FLOR DE MAYO YLD TRIAL	$06 / 07 / 12$	SVR\&EC	FRANKENMUTH	H 16	SQ.	LATTICE	3	DIRECT	HARVESTED
2111 PRELIMINARY GREAT NORTHERN YLD TRIAL	L 06/07/12	SVR\&EC	FRANKENMUTH	H 16	SQ.	LATTICE	3	DIRECT	HARVESTED
2112 PRELIM. PINK \& SMALL RED YLD TRIAL	06/07/12	SVR\&EC	FRANKENMUTH	H 90	ALPHA	LATTICE	3	DIRECT	HARVESTED
2113 PINTO GENETIC GAIN YLD TRIAL	$06 / 07 / 12$	SVR\&EC	FRANKENMUTH	H 20	REC.	LATTICE	3	DIRECT	HARVESTED
2114 MIDWEST \& CO-OP. REGIONAL TRIAL	06/07/12	SVR\&EC	FRANKENMUTH	H 42	REC.	LATTICE	3	DIRECT	HARVESTED
2115 IRRIGATED DROUGHT TRIAL	$06 / 12 / 12$	SVR\&EC	FRANKENMUTH	H 96	REC.	LATTICE	3	ROD PUL	LED
2116 NON-IRRIGATED DROUGHT TRIAL	$06 / 12 / 12$	SVR\&EC	FRANKENMUTH	H 96	REC.	LATTICE	3	ROD PUL	LED
2917 ORGANIC YIELD TRIAL-NAVY \& BLACK	06/12/12		CARO	36	SQ.	LATTICE	4	DIRECT	HARVESTED
2918 ORGANIC YIELD TRIAL-NAVY \& BLACK	06/15/12		WISNER	36	SQ.	LATTICE	4	DIRECT	HARVESTED
2219 STANDARD KIDNEY YIELD TRIAL	06/13/12	ENTRICAN	MONTCALM	56	REC.	LATTICE	3	HAND PU	LLED
2220 STANDARD CRANBERRY YIELD TRIAL	06/13/12	ENTRICAN	MONTCALM	64	SQ.	LATTICE	3	ROD PUL	LED
2221 PRELIMINARY BUSH KIDNEY YIELD TRIAL	$06 / 13 / 12$	ENTRICAN	MONTCALM	56	REC.	LATTICE	3	ROD PUL	LED
2222 PRELIMINARY MAYACOBA YIELD TRIAL	06/13/12	ENTRICAN	MONTCALM	5	RCBD		3	HAND PU	LLED
2223 WHITE MOLD NATIONAL YIELD TRIAL	06/14/12	ENTRICAN	MONTCALM	64	SQ.	LATTICE	3	ROD PUL	LED
2225 BNF YIELD TRIAL	06/19/12	CAMPUS	E.LANSING	130	ALPHA	LATTICE	3	ROD PUL	LED

SVR\&EC: SAGINAW VALLEY RESEARCH \& EXTENSION CENTER
PROCEDURE: PLANTED IN 4 ROW PLOTS, 20 FEET LONG, 20 INCH ROW WIDTH, 4 SEEDS/FOOT, 15 FOOT SECTION OF CENTER 2 ROWS WAS HARVESTED AT MATURITY.
FRANKENMUTH:FERTILIZER BROADCAST: 400 POUNDS OF 15-5-13 + S, ZN, MN, CU PRIOR TO PLANTING.
HERBICIDES APPLIED: 1.0 PT DUAL + 1.5 QT. EPTAM APPLIED PPI AND 1.0 PT PROWL PRE-EMERGE.
3 OZ. RAPTOR/0.75 PT REFLEX/1 PT BASAGRAN ON 7/11/12.
PESTICIDES APPLIED: 3.0 OZ. WARRIOR ON JULY 11.
ENTRICAN: FERTILIZER BROADCAST: 200 POUNDS OF 19-10-19 PRIOR TO PLANTING. 50 POUNDS 46-0-0 SIDE DRESSED ON JULY 24. HERBICIDES APPLIED: 2 PT. SONALAN/1.25 QT EPTAM/2PT. DUAL PPI. 3 OZ. RAPTOR/0.75 PT REFLEX/1 PT BASAGRAN ON 7/13/12. PESTICIDES APPLIED: 3.0 OZ. PROVINCE ON JULY 13.
IRRIGATION APPLIED: 4.75 INCHES ON WHITE MOLD TRIALS - 9 APPLICATIONS; 3.75 INCHES ON STANDARD YIELD TRIALS - 7 APPLICATIONS
E. LANSING: FERTILIZER: NONE.

HERBICIDES APPLIED: 2 PT. SONALAN + 1.25 QT EPTAM + 2PT. DUAL APPLIED PPI. 3 OZ. RAPTOR/0.75 PT REFLEX/1 PT BASAGRAN APPLIED 7/16/12.
PESTICIDES APPLIED: 4.0 OZ. WARRIOR ON JULY 16.

EXPERIMENT 2101 STANDARD NAVY YIELD TRIAL

NAME	PEDIGREE	ENTRY	YIELD CWT IACRE	$\begin{gathered} 100 \text { SEED } \\ \text { WT. (g) } \\ \hline \end{gathered}$	DAYS TO FLOWER	DAYS TO MATURITY	$\begin{gathered} \text { LODGING } \\ (1-5) \end{gathered}$	$\begin{aligned} & \text { HEIGHT } \\ & (\mathrm{cm}) \\ & \hline \end{aligned}$	DES. SCORE
N11284	MEDALIST/N08003	39	28.4	18.3	45.0	99.0	1.0	50.5	4.5
N11276	N08010/N08007	52	27.3	18.7	50.0	97.0	1.0	49.5	4.5
N11230	N05311//BMD12/B04587	20	27.1	18.7	42.0	100.0	1.0	48.0	4.5
N11283	MEDALIST/N08003	34	26.9	18.4	44.0	100.0	1.5	54.5	6.0
I11264	COOP 03019, MERLIN	1	26.9	19.6	45.0	102.0	2.0	50.5	4.0
N11277	N08010/N08007	47	26.9	20.5	48.0	97.0	1.0	51.0	6.0
N11292	N08006/MEDALIST	43	26.4	17.3	46.0	100.0	1.0	54.5	4.5
N11232	N05311//BMD12/B04587	15	25.8	18.3	44.0	100.0	1.5	51.5	5.0
N12471	B09174/N09056	55	25.8	23.7	46.0	98.0	1.5	47.5	4.0
N11238	N07009//N05324/B04554	26	25.6	15.7	49.0	101.0	1.0	54.0	6.0
N11298	MEDALIST//B05054/B04588	36	25.5	19.7	46.0	99.0	1.0	49.0	4.0
N11296	MEDALIST//B05054/B04588	49	25.4	20.2	43.0	99.0	1.5	49.5	4.5
I10103	OAC 7-2, OAC REXETER	56	25.3	20.1	44.0	103.0	2.0	52.0	4.0
N11264	N08003/MEDALIST	38	25.1	20.0	42.0	99.0	2.0	49.0	4.5
108958	Mayflower/Avanti, MEDALIST	8	25.0	18.9	46.0	102.0	2.0	51.5	4.5
N11282	MEDALIST/N08003	40	24.8	18.4	44.0	101.0	2.0	53.5	4.0
N11256	N07009/MEDALIST	41	24.6	18.3	48.0	98.0	1.0	49.5	4.5
N11231	N05311//BMD12/B04587	19	24.3	17.0	44.0	99.0	1.5	49.0	5.0
N10109	B05055/N05324	6	24.1	19.8	48.0	101.0	1.5	53.0	4.5
N09104	N05311/B05055	5	23.9	19.2	47.0	98.0	1.0	48.5	4.5
N11225	N05311*/B05044	11	23.9	18.1	49.0	101.0	1.5	51.5	4.0
N09044	N05311/X06121	9	23.8	17.5	44.0	100.0	1.0	51.0	5.0
N11257	N07009/MEDALIST	42	23.8	19.9	49.0	100.0	1.0	53.0	5.0
N11245	N04158/B07554	23	23.8	19.2	47.0	99.0	1.0	47.0	4.0
192002	C-20*3//GTS-0801/Seafarer, VISTA	2	23.8	19.9	46.0	100.0	2.5	46.5	4.0
I12301	INDI	3	23.7	20.3	44.0	98.0	1.0	51.0	4.5
N11258	N07009/MEDALIST	35	23.6	19.5	49.0	100.0	1.0	53.5	4.0
N10103	N05319//N05311/N04109	4	23.5	20.5	43.0	100.0	1.0	53.5	5.0
N11275	N08010/N08007	46	23.4	19.2	44.0	101.0	1.5	51.5	4.0
N11262	N08003/B07554	37	23.4	22.8	45.0	102.0	2.0	50.5	4.5
N11216	N04158/B04265	10	23.4	21.8	44.0	101.0	2.0	48.5	4.0
N11300	MEDALIST//B05054/B04588	50	23.3	20.4	46.0	100.0	1.0	51.0	4.5
N11289	N08012/N08007	48	22.9	20.8	45.0	101.0	1.0	48.5	4.0
N11228	N05311//N07009/N05324	13	22.8	17.0	46.0	100.0	2.0	48.5	5.0
N11226	N05311*/B05044	12	22.7	17.4	50.0	102.0	1.0	53.5	4.0
N11227	N05311//N07009/N05324	16	22.7	19.2	45.0	99.0	2.0	48.0	4.5
N11234	N05311//N06705/B04588	17	22.3	20.5	45.0	100.0	1.5	48.0	4.0

EXPERIMENT 2101 STANDARD NAVY YIELD TRIAL							PLANTED: 6/6/12		
NAME	PEDIGREE	ENTRY	YIELD CWT IACRE	$\begin{gathered} 100 \text { SEED } \\ \text { WT. (g) } \end{gathered}$	DAYS TO FLOWER	DAYS TO MATURITY	$\begin{gathered} \text { LODGING } \\ (1-5) \\ \hline \end{gathered}$	$\begin{aligned} & \text { HEIGHT } \\ & \text { (cm) } \end{aligned}$	DES. SCORE
N11002	N04164//N05311/B05044	31	22.3	19.7	43.0	99.0	1.0	52.0	4.5
N11008	B07554/N08007	30	21.9	19.0	46.0	102.0	1.0	52.5	4.0
N11293	N08006/MEDALIST	54	21.8	20.8	45.0	102.0	1.5	53.5	5.0
N11217	N05324/N04158	28	21.6	19.4	50.0	102.0	1.5	52.0	4.5
N11280	AVALANCHE/N08007	44	21.6	21.3	45.0	102.0	2.0	52.5	4.0
N11003	N04164//N05311/B05044	27	21.6	20.3	44.0	101.0	1.5	53.0	4.0
N11235	N05311//N06705/B04588	29	21.3	20.6	43.0	99.0	1.0	48.0	3.5
N11222	N04164//N05311/B05044	32	21.1	19.2	47.0	100.0	2.0	49.0	4.0
108902	HYLAND T9905	7	21.1	19.8	44.0	100.0	2.0	47.0	4.0
N11001	N04164//N05311/B05044	25	20.4	18.7	45.0	101.0	1.0	51.5	4.5
N11285	N04152/N05346//N04141/N05317	45	20.3	18.4	45.0	103.0	1.5	51.5	4.0
N11206	N04158/N05311	18	20.2	19.5	46.0	102.0	2.0	51.5	4.0
N11212	N05311/B05055	22	20.0	18.7	46.0	100.0	1.5	51.0	5.0
N11279	N08010//B04349/B05044	51	20.0	18.9	45.0	100.0	1.5	47.5	4.0
N11260	N07009//B04349/B05044	53	20.0	16.3	47.0	101.0	1.5	51.5	4.0
N11202	N05324//N04109/N04158	14	19.7	21.4	43.0	102.0	2.0	49.5	3.0
N11213	N05346/B05055	24	18.7	20.3	46.0	102.0	1.0	46.0	3.5
N11005	B07055//B05044/N04158	33	17.8	17.4	43.0	100.0	2.0	46.0	3.5
N11207	N04158/N05311	21	16.9	20.0	48.0	102.0	1.5	51.5	4.0
MEAN (56)			23.2	19.4	45.4	100.3	1.5	50.5	4.4
LSD (.05)			3.2	1.1	1.0	2.3	0.7	2.3	0.5
CV (\%)			11.7	4.7	1.3	1.4	28.0	2.7	6.6

EXPERIMENT 2102 STANDARD BLACK YIELD TRIAL (1)							PLANTED: 6/6/12		
NAME	PEDIGREE	ENTRY	YIELD CWT IACRE	$\begin{gathered} 100 \text { SEED } \\ \text { WT. (g) } \end{gathered}$	DAYS TO FLOWER	DAYS TO MATURITY	$\begin{gathered} \text { LODGING } \\ (1-5) \end{gathered}$	HEIGHT (cm)	DES. SCORE
B10244	B04610/N05346	12	35.6	22.2	46.0	101.0	1.0	54.5	6.0
I10102	Mackinac/Jaguar, LORETO	1	35.4	21.1	46.0	101.0	3.0	48.0	4.0
B11363	B04644/B07554	28	34.9	21.0	45.0	100.0	1.0	50.0	5.0
B10213	B04587/IZORRO/DPC-1	13	34.5	20.1	46.0	101.0	1.5	52.5	5.0
B10208	N05324/B05055	16	34.1	23.4	44.0	101.0	1.0	51.0	4.5
B11334	N07009//B04349/B05044	29	34.0	19.3	43.0	99.0	1.0	51.5	5.5
B10215	B04587/IZORRO/DPC-1	15	33.9	19.9	47.0	100.0	1.0	50.0	5.0
B04554	B00103*/X00822, ZORRO	6	33.6	20.2	48.0	102.0	2.0	54.0	5.0
B10202	N05311/X06121	24	32.9	22.8	44.0	100.0	1.0	53.5	5.0
B11259	N07009//B04349/B05044	36	32.3	19.5	45.0	103.0	1.5	50.5	4.0
B09165	B04554/B04587	10	32.1	18.9	46.0	102.0	1.5	54.0	6.0
B11360	B04644/B05066	30	31.9	21.5	42.0	101.0	2.0	48.0	4.0
B09175	N05311/B05055	2	31.8	24.2	46.0	103.0	2.0	54.0	4.5
B10214	B04587/IZORRO/DPC-1	17	31.7	19.9	46.0	101.0	2.0	53.0	5.0
B11364	B04644/B07554	34	31.4	23.0	45.0	100.0	1.0	52.5	5.5
B11588	I82054/B07554	8	31.4	21.2	47.0	104.0	2.0	48.0	4.0
B10210	N05324/B04431	14	31.4	24.0	44.0	104.0	2.0	54.0	4.5
B11343	B07554//ZORRO/B05044	27	31.4	19.8	44.0	100.0	2.5	48.5	4.0
B09119	B04554/X06127	7	31.1	19.5	47.0	100.0	1.0	51.5	4.5
B95556	B90211/N90616, JAGUAR	5	30.9	19.9	47.0	101.0	1.0	50.0	4.5
B11344	B07554//ZORRO/B05044	35	30.8	19.0	47.0	100.0	2.0	48.0	4.0
B10238	ZORRO/B05055	21	30.8	19.0	47.0	101.0	1.0	50.5	4.5
B10227	B05055/N05324	22	30.7	22.4	45.0	103.0	2.0	49.5	4.0
B10231	B06311/N05311	23	30.4	17.0	47.0	100.0	1.0	49.0	4.0
B10243	B04610/N05346	19	30.4	18.5	48.0	103.0	2.0	53.0	4.0
B11361	B04644/B05066	32	30.0	20.2	45.0	102.0	2.0	50.5	3.5
B11362	B04644/B07554	33	29.9	24.2	44.0	99.0	2.0	48.5	4.0
103390	ND9902621-2, ECLIPSE	11	29.8	20.2	45.0	99.0	2.0	51.5	4.0
B10225	B04644//B05055/B05044	20	29.6	20.7	45.0	98.0	1.0	48.5	4.0
B11375	B07104/B04391	31	29.3	20.6	44.0	102.0	2.0	52.5	4.5
107116	T-39/Midnight, SHANIA	3	29.2	20.0	48.0	103.0	2.5	49.5	3.0
B10201	N05311/B05055	26	28.5	21.0	43.0	99.0	1.5	52.0	5.0
108907	Midnight/Blackhawk, BLACK VELVET	4	26.8	23.7	48.0	104.0	3.0	49.5	3.5
181066	SEL-BTS,T-39	9	24.8	21.9	44.0	103.0	4.0	40.5	3.0
B10228	B06311/B05039	25	24.2	22.0	45.0	103.0	2.0	47.5	4.0
B10234	B04644/B190	18	24.1	19.4	45.0	101.0	1.5	47.0	3.5
MEAN (36)			31.0	20.9	45.3	101.0	1.7	50.5	4.4
LSD (0.05)			2.7	1.4	1.4	1.8	0.5	2.5	0.6
CV (\%)			7.5	5.7	1.8	1.0	17.9	2.9	7.4

EXPERIMENT 2103 STANDARD BLACK YIELD TRIAL (2)							PLANTED: 6/6/12		
NAME	PEDIGREE	ENTRY	YIELD CWT IACRE	$\begin{aligned} & 100 \text { SEED } \\ & \text { WT. (g) } \end{aligned}$	DAYS TO FLOWER	DAYS TO MATURITY	$\begin{gathered} \text { LODGING } \\ (1-5) \end{gathered}$	$\begin{aligned} & \text { HEIGHT } \\ & \text { (cm) } \end{aligned}$	DES. SCORE
B09175	N05311/B05055	2	34.5	24.6	46.0	102.0	2.0	53.0	4.5
B11371	B05055/B04587	11	33.0	21.5	45.0	101.0	2.0	51.5	4.5
B11311	B04587/IZORRO/DPC-1	22	32.8	19.1	47.0	102.0	1.5	51.0	5.0
B04554	B00103*/X00822, ZORRO	8	31.9	18.4	47.0	101.0	2.0	51.5	5.0
B11310	B04587/IZORRO/DPC-1	10	31.8	22.1	46.0	100.0	2.0	49.0	4.0
B11312	B04587//B05070/B05044	6	31.8	20.1	46.0	103.0	2.0	50.5	4.0
B11370	B05055/B04265	24	31.4	18.6	44.0	99.0	1.5	47.5	4.0
B10244	B04610/N05346	1	31.4	21.7	46.0	100.0	1.0	54.0	6.0
B11304	N05324/B05055	20	31.3	21.4	44.0	100.0	2.0	48.5	4.5
B11348	B04644//ZORRO/B05044	34	30.9	20.4	46.0	98.0	1.5	49.5	4.5
B11302	N05311//B05055/B05053	7	30.6	21.1	44.0	99.0	2.0	51.5	4.5
B11356	JAGUAR/B04644	19	30.1	19.2	45.0	101.0	2.0	51.5	4.5
B11338	N08007//B04349/B05044	23	30.1	17.8	46.0	100.0	1.0	51.5	5.0
B11285	N04152/N05346//N04141/N05317	32	30.0	19.2	46.0	101.0	2.0	49.0	4.5
B11372	B05055/B04587	14	29.8	20.6	48.0	99.0	2.5	49.5	5.0
103390	ND9902621-2, ECLIPSE	26	29.2	19.2	44.0	98.0	1.0	49.0	4.0
B11305	N05324/N04158	5	29.1	19.1	46.0	101.0	1.0	51.0	4.5
B11309	B04587/IZORRO/B05055	9	28.5	19.5	44.0	100.0	1.0	49.5	5.0
B01261	Black Magic/Shiny Crow	31	28.5	19.7	52.0	100.0	3.5	44.5	3.0
B11306	B04591/ZORRO	12	28.5	18.3	46.0	103.0	2.0	53.0	4.5
B11313	B04644//B04349/B05044	17	28.4	18.8	43.0	97.0	1.5	47.0	4.0
B11341	N05311//N07009/N05324	13	28.3	18.7	43.0	99.0	2.0	47.5	4.5
B11004	N05324//N05311/B05044	30	28.3	21.4	42.0	102.0	2.0	49.0	3.0
B11316	B05052//B05044/B04588	33	27.9	20.0	45.0	99.0	1.5	48.5	4.0
B11329	B04644/B04391	25	27.3	20.2	43.0	101.0	1.0	51.5	4.5
B11369	B05054/B04588//B07554	28	27.2	19.9	47.0	101.0	1.5	48.5	4.0
B11322	B05055/B04644	35	27.0	17.8	43.0	98.0	1.0	48.5	5.0
107116	T-39/Midnight, SHANIA	3	26.9	17.7	46.0	100.0	2.0	47.5	3.0
B11352	B04644//B06311/B05044	15	26.8	20.4	44.0	98.0	1.5	47.5	4.5
B11314	B04644//B04349/B05044	27	26.8	22.0	42.0	98.0	1.5	48.0	4.0
B11350	B04644//B05055/B05044	21	26.3	20.5	46.0	98.0	1.0	47.5	4.0
B11315	B04644//B05055/B04587	18	25.9	19.6	42.0	98.0	1.0	47.0	4.0
B11351	B04644//B05055/B05044	16	25.9	18.5	44.0	98.0	1.5	46.5	4.0
B11307	N05311/B04587	29	25.6	22.2	43.0	99.0	1.5	47.5	4.0
B11355	JAGUAR/B04644	4	23.8	17.0	44.0	98.0	1.0	48.0	2.5
B11345	B07554//B05044 /N04158	36	23.2	18.9	43.0	101.0	2.0	49.0	4.0
MEAN (36)			28.9	19.9	44.9	99.6	1.6	49.3	4.3
LSD (0.05)			2.6	1.4	1.9	2.9	0.7	2.7	0.8
CV (\%)			7.6	6.0	2.5	1.7	23.3	3.3	11.0

EXPERIMENT 2104 PRELIMINARY NAVY YIELD TRIAL							PLANTED: 6/6/12			
NAME	PEDIGREE	ENTRY	YIELD CWT IACRE	$\begin{gathered} 100 \text { SEED } \\ \text { WT. (g) } \end{gathered}$	DAYS TO FLOWER	DAYS TO MATURITY	$\begin{gathered} \text { LODGING } \\ (1-5) \\ \hline \end{gathered}$	$\begin{aligned} & \text { HEIGHT } \\ & \text { (cm) } \\ & \hline \end{aligned}$	DES. SCORE	R73*
N11283	MEDALIST/N08003	75	34.1	19.4	47.0	100.0	2.5	50.0	4.5	
111264	COOP 03019, MERLIN	77	31.3	20.1	45.0	102.0	2.0	49.5	4.0	
N11298	MEDALIST//B05054/B04588	76	31.1	20.0	47.0	99.0	1.0	51.5	5.0	
N12468	N08010//B04349/B05044	68	30.4	18.9	49.0	100.0	2.0	50.5	4.0	6R
N12443	N09060/N09175	43	30.3	21.7	50.0	102.0	2.0	51.0	4.5	6 R
N12442	N09060/N09175	42	29.6	22.9	50.0	101.0	1.5	54.0	5.0	6R
N12453	N09065/N09050	53	29.0	22.6	45.0	101.0	1.5	50.0	4.5	6R
N12447	B09174/N09056	47	28.5	22.1	49.0	102.0	2.5	49.5	4.0	2S, 5R
N12441	N09060/N09175	41	28.3	22.8	49.0	102.0	2.0	52.0	4.0	6 R
N12466	N08010/N08007	66	28.2	18.9	49.0	99.0	1.5	52.5	4.5	6R
N12435	N09056/N09175	35	27.9	21.2	45.0	101.0	2.5	47.5	4.5	6R
N11228	N05311//N07009/N05324	73	27.4	18.0	47.0	100.0	2.5	47.5	4.5	
N11258	N07009/MEDALIST	74	27.4	19.9	47.0	100.0	2.0	52.5	5.0	
N12411	C-20/N09011	11	27.3	21.7	45.0	99.0	3.0	44.0	3.0	6 S
N12438	N09056/N09175	38	27.2	21.2	44.0	100.0	2.0	53.0	5.0	6R
N12405	N04158//B04644/X08103	5	26.9	19.4	44.0	101.0	1.0	50.5	5.0	6S
N12439	N09056/N09175	39	26.7	21.0	48.0	101.0	2.0	49.5	4.0	6R
N12461	Eclipse/N09056	61	26.7	20.1	41.0	97.0	2.5	46.5	4.0	6R
N12463	Eclipse/N09056	63	26.7	21.2	47.0	100.0	2.0	48.5	4.0	1S, 5R
N12437	N09056/N09175	37	26.7	16.0	47.0	103.0	2.0	51.0	4.0	6R
112301	INDI	80	26.6	20.8	44.0	98.0	1.0	52.0	4.5	
N12436	N09056/N09175	36	26.6	21.6	46.0	101.0	2.0	51.5	4.5	6R
N11226	N05311*/B05044	72	26.5	18.0	50.0	103.0	1.5	54.5	4.5	
N12451	N07009//G07309/G08274	51	26.4	31.4	40.0	98.0	3.5	44.5	3.0	$6 S$
N11216	N04158/B04265	71	26.4	21.6	46.0	102.0	3.0	49.0	4.0	
N12458	B09174/N09056	58	26.2	18.6	46.0	97.0	2.5	48.0	4.0	3S, 2R
192002	C-20*3//GTS-0801/Seafarer, VISTA	78	26.2	19.5	46.0	101.0	2.5	47.5	4.0	
N12467	N08010/N08007	67	26.1	18.9	50.0	100.0	2.5	49.5	4.0	5R
N12456	B09174/N09056	56	26.1	20.7	43.0	100.0	2.5	47.5	4.0	6 S
N12446	B07554//X08106/X08102	46	25.6	19.9	44.0	99.0	1.5	48.0	4.0	6R
N12412	C-20/N09011	12	25.3	22.8	44.0	99.0	3.0	46.0	3.0	6 S
N12457	B09174/N09056	57	25.3	20.8	43.0	101.0	2.0	50.0	4.0	2S, 4R
N12449	N04158//B04644/X08103	49	25.3	24.8	43.0	102.0	1.5	47.0	4.0	1S, 6R
N12410	C-20/N09011	10	25.2	20.5	48.0	101.0	3.0	45.5	3.0	6 S
N12454	B09174/N09056	54	25.1	20.5	44.0	101.0	2.0	51.0	4.5	6S
N12465	N08007//B05054/B04588	65	25.0	19.9	47.0	104.0	2.0	52.5	4.5	5R
N12469	Laker/N08007	69	24.9	21.4	48.0	99.0	2.5	46.5	4.0	6R
N12406	N04158//B04644/X08103	6	24.8	20.4	47.0	102.0	1.0	51.5	4.5	6 S
N12460	Eclipse/N09056	60	24.7	19.8	43.0	97.0	2.0	46.5	4.0	6R
N12462	Eclipse/N09056	62	24.5	19.3	46.0	101.0	2.5	48.5	4.0	6R

EXPERIMENT 2105 PRELIMINARY BLACK YIELD TRIAL							PLANTED: 6/6/12			
NAME	PEDIGREE	ENTRY	YIELD CWT IACRE	$\begin{gathered} 100 \text { SEED } \\ \text { WT. }(\mathrm{g}) \end{gathered}$	DAYS TO FLOWER	DAYS TO MATURITY	$\begin{gathered} \text { LODGING } \\ (1-5) \end{gathered}$	HEIGHT (cm)	DES. SCORE	R73*
B10244	B04610/N05346	40	32.1	20.0	48.0	101.0	2.0	56.6	5.0	
B09175	N05311/B05055	39	31.0	24.3	47.0	101.0	1.9	56.6	5.0	
B12709	B07554//Jaguar/B07554	9	31.0	20.7	49.0	101.0	1.6	55.3	5.3	6R
B12720	B09175/Eclipse	20	30.5	23.3	48.0	98.0	2.0	56.4	6.0	6R
B12721	B09175/Eclipse	21	30.3	23.2	48.0	95.0	0.9	55.6	6.0	6R
B12707	B07554//X08106/X08102	7	29.9	21.8	48.0	101.0	1.4	55.1	5.3	6R
B12712	B07554//Jaguar/B07554	12	29.8	19.7	48.0	102.0	1.0	57.1	5.7	6 R
B12710	B07554//Jaguar/B07554	10	29.5	21.1	47.0	100.0	1.3	56.5	6.0	6 R
B12708	B07554//X08106/X08102	8	29.5	20.9	48.0	101.0	1.4	55.9	5.7	6R
B12724	B09184/B09135	24	29.4	20.6	47.0	102.0	2.0	57.5	5.3	6R
B12715	Zorro/N09056	15	28.8	19.1	47.0	101.0	1.6	52.0	4.3	6 R
B12713	B07554//Jaguar/B07554	13	28.8	21.1	48.0	101.0	1.3	56.8	5.7	6 R
B12728	B09193/B09184	28	28.7	19.8	43.0	98.0	1.6	48.9	4.0	6R
B12716	B09128/Eclipse	16	28.6	18.3	45.0	97.0	1.1	54.1	6.0	6R
B12736	Eclipse/N09056	36	28.6	20.0	49.0	99.0	2.0	55.1	5.0	6 S
B12723	B09184/B09135	23	28.4	20.1	47.0	102.0	1.6	54.0	5.0	6 R
B12706	B07554//X08106/X08102	6	28.2	20.6	48.0	102.0	1.4	57.3	5.7	6 R
107116	T-39/Midnight, SHANIA	42	27.6	19.2	49.0	102.0	2.0	54.4	4.0	
B12729	B09201/B09135	29	27.4	17.9	46.0	101.0	1.4	54.5	5.0	6 S
B12711	B07554//Jaguar/B07554	11	27.4	19.6	48.0	102.0	1.4	57.6	5.7	6R
B04554	B00103*/X00822, ZORRO	41	27.2	19.3	50.0	101.0	2.0	55.8	5.0	
B12734	Eclipse/N09056	34	26.5	20.6	48.0	99.0	1.6	53.3	4.7	6R
B12704	B05066//Jaguar/B07554	4	26.0	18.6	49.0	99.0	1.1	52.7	4.7	6 S
B12702	B05066//Jaguar/B07554	2	25.1	19.0	48.0	101.0	2.0	54.8	5.3	6 S
B12732	B09201/B09197	32	24.9	18.7	50.0	103.0	1.7	54.0	4.7	6R
B12735	B09135/B09201	35	24.7	20.9	49.0	102.0	2.1	54.2	4.7	2S, 4R
B12701	B05066//Jaguar/B07554	1	24.2	19.7	48.0	100.0	1.4	54.1	5.0	6S
B12727	B09184/B09202	27	24.1	19.2	46.0	101.0	2.0	50.7	4.3	6R
B12703	B05066//Jaguar/B07554	3	24.1	19.1	48.0	98.0	1.3	52.9	4.7	6 S
B12726	B09184/B09201	26	22.4	16.7	48.0	100.0	1.9	50.5	4.0	6R
B12738	B05055/B04265	38	22.3	21.7	45.0	104.0	1.9	57.2	4.0	6 R
B12719	B09135/B09201	19	22.2	18.0	48.0	103.0	2.4	51.9	4.7	6R
B12717	B09135/B09201	17	21.8	17.8	49.0	102.0	2.0	53.8	4.7	6R
B12737	B05055/B04265	37	21.5	20.7	44.0	103.0	1.6	54.7	4.7	6R, 1S
B12722	B09184/B09135	22	21.3	20.3	48.0	103.0	1.7	53.4	4.3	6R
B12725	B09184/B09135	25	21.1	18.4	49.0	103.0	2.0	55.1	4.3	6R
B12718	B09135/B09201	18	20.8	19.2	45.0	100.0	2.0	52.1	4.3	6 R
B12705	B07554//X08106/X08102	5	20.1	18.6	48.0	99.0	1.0	53.6	5.3	6R
B12714	Zorro/N09056	14	20.1	20.7	51.0	101.0	2.9	47.1	4.0	6R
B12733	Eclipse/B09182	33	19.5	18.7	48.0	96.0	1.0	48.3	4.3	6 S
B12731	B09201/B09197	31	17.4	16.5	52.0	104.0	3.1	49.6	3.7	6R
B12730	B09201/B09197	30	17.2	17.0	50.0	103.0	3.6	46.7	4.0	6R
MEAN (42)			25.7	19.8	47.9	100.8	1.8	53.9	4.9	
LSD (0.05)			3.7	1.4	2.4	1.6	0.5	2.2	0.1	
CV (\%)			10.6	5.2	2.9	1.1	22.4	3.0	2.1	

EXPERIMENT 2106 NAVY GENETIC GAIN YIELD TRIAL							PLANTED: 6/6/12		
NAME	PEDIGREE	ENTRY	YIELD CWT IACRE	$\begin{gathered} 100 \text { SEED } \\ \text { WT. (g) } \end{gathered}$	DAYS TO FLOWER	DAYS TO MATURITY	$\begin{gathered} \text { LODGING } \\ (1-5) \end{gathered}$	$\begin{aligned} & \text { HEIGHT } \\ & \text { (cm) } \\ & \hline \end{aligned}$	DES. SCORE
BC133	Medalist	6	26.8	17.7	44.0	104.0	2.0	51.5	4.3
BC320	Vista	5	26.8	19.3	45.0	101.0	2.7	48.0	4.0
BC086	Seahawk	12	26.4	22.0	43.0	101.0	4.1	41.3	3.3
BC394	Midland	3	26.0	15.2	41.0	97.0	1.9	47.9	4.7
BC066	C-20	13	25.7	18.0	45.0	104.0	3.1	47.0	4.0
BC068	Mayflower	4	25.2	20.3	47.0	101.0	0.9	56.3	5.0
BC134	Navigator	9	24.7	19.7	44.0	100.0	1.1	54.4	5.0
BC056	Seafarer	14	23.6	16.6	41.0	102.0	1.9	47.7	3.7
BC354	T9905	8	23.0	20.1	46.0	104.0	3.1	48.4	4.0
BC054	Michelite	2	22.6	17.2	45.0	104.0	3.4	47.1	3.0
BC065	Bunsi	16	20.8	19.4	42.0	104.0	3.3	44.8	3.3
BC305	Norstar	7	20.8	19.8	42.0	99.0	2.9	44.9	4.0
112302	Robust	15	20.5	20.1	52.0	103.0	5.0	34.7	2.7
BC128	Ensign	10	18.6	19.2	43.0	102.0	3.0	46.7	3.3
BC055	Sanilac	1	17.7	16.3	40.0	100.0	1.9	45.9	3.7
BC306	Avalanche	11	17.4	23.0	41.0	105.0	2.4	48.2	4.0
MEAN (16)			22.9	19.0	43.8	102.0	2.7	47.2	3.9
LSD (0.05)			2.8	1.2	2.6	1.9	0.4	2.1	0.5
CV (\%)			8.5	4.6	3.2	1.3	9.5	3.1	9.3

EXPERIMENT 2107 STANDARD GREAT NORTHERN YIELD TRIAL							PLANTED: 6/7/12		
NAME	PEDIGREE	ENTRY	YIELD CWT IACRE	$\begin{gathered} 100 \text { SEED } \\ \text { WT. (g) } \\ \hline \end{gathered}$	DAYS TO FLOWER	DAYS TO MATURITY	LODGING $(1-5)$	$\begin{aligned} & \text { HEIGHT } \\ & (\mathrm{cm}) \\ & \hline \end{aligned}$	DES. SCORE
G11438	G07309/P08401	8	32.1	39.8	42.0	98.0	2.5	48.0	4.3
G08254	G04514/Matterhorn	2	30.8	40.9	42.0	98.0	3.0	46.0	4.0
G11416	G05220/X07810	18	30.1	36.5	42.0	100.0	2.5	46.0	4.3
G11440	G07309/P08401	29	28.8	34.9	44.0	99.0	2.5	47.0	4.0
G11464	G07309//G07302/BMN13	7	28.7	44.6	43.0	101.0	2.0	49.5	4.3
G11429	G07309//G05241/B04588	14	28.6	32.1	45.0	104.0	3.0	48.5	4.0
G11441	G07309/P08401	15	28.4	38.3	42.0	99.0	2.0	48.5	3.5
G11427	G07309//G07302/BMN13	12	27.7	38.1	42.0	100.0	3.0	47.5	4.0
G08259	G04517/G02647	4	27.2	40.2	43.0	98.0	3.0	47.0	3.8
G11411	G05220/X07810	23	27.1	31.2	44.0	99.0	2.0	48.5	4.3
G11428	G07309//G07302/BMN13	26	26.5	37.8	42.0	99.0	2.5	49.0	3.8
G11452	G08274/P08410	13	26.4	36.8	43.0	98.0	2.0	45.5	3.3
G11405	G05220//G04207/P05437	17	26.3	35.2	44.0	102.0	3.0	47.0	4.0
G09329	G04514/G02647	3	25.9	39.9	43.0	100.0	2.5	46.5	3.8
G11406	MATTERHORN//G04207/P05437	22	25.8	41.5	41.0	100.0	2.5	49.0	3.8
G11463	G07309//G04207/I07130	16	25.8	39.6	44.0	102.0	3.0	47.0	3.8
G08160	Matterhorn/E507	5	25.7	31.7	44.0	99.0	2.0	47.5	3.0
G93414	MATTERHORN	27	25.4	38.7	43.0	99.0	3.0	46.0	4.0
G11431	G07309//G05241/B04588	19	25.0	34.4	45.0	102.0	2.5	49.0	4.3
G09303	G04207/P05437	1	24.7	34.6	43.0	101.0	2.0	49.0	4.3
G11404	G05220//G04207/P05437	6	24.3	39.8	42.0	104.0	3.0	46.5	3.5
G11424	G07302//G04207/I07130	20	24.3	37.4	42.0	98.0	2.5	44.5	3.5
G11467	NE-1-06-19//G04207/BMN13	32	23.9	27.5	46.0	103.0	1.5	55.0	4.0
G11418	G05220//G04207/P05437	25	23.8	37.9	42.0	103.0	3.0	46.5	4.0
G11412	G05220/X07810	34	23.6	31.7	43.0	101.0	1.5	51.0	4.0
G11465	NE-1-06-19//G04207/BMN13	31	23.4	28.8	44.0	100.0	1.5	53.0	4.5
G11468	NE-1-06-19//G04207/BMN13	36	23.4	29.8	45.0	103.0	1.5	52.0	3.8
G11423	G07302//I07130/G05239	28	23.0	39.0	44.0	100.0	2.5	46.5	4.0
G11449	G08274/P08410	11	22.6	32.8	43.0	103.0	1.5	49.5	4.3
G11459	G08210/P06125	24	22.6	32.8	44.0	102.0	2.5	50.5	4.0
G11422	G07302//I07130/G05239	30	22.5	34.0	43.0	101.0	3.0	47.0	3.5
G12501	G07309//G05241/B04588	35	21.9	32.9	42.0	101.0	2.0	52.0	5.3
G11450	G08274/P08410	9	20.1	34.9	41.0	103.0	1.0	51.0	3.5
G11436	G07302/P07406	21	19.6	35.6	43.0	103.0	3.0	49.0	3.5
G11433	G07302/P07406	33	19.0	30.4	45.0	104.0	3.0	47.5	3.5
G08121	MATTERHORN/EMP 507	10	14.0	29.3	50.0	110.0	4.0	45.0	2.3
MEAN (36)			25.0	35.6	43.0	100.8	2.4	48.3	3.9
LSD (0.05)			3.1	4.0	2.0	2.2	0.8	2.0	0.8
CV (\%)			10.6	9.5	2.8	1.3	19.0	2.4	17.1

EXPERIMENT 2108 STANDARD PINTO YIELD TRIAL							PLANTED: 6/7/12		
NAME	PEDIGREE	ENTRY	YIELD CWT IACRE	$\begin{gathered} 100 \text { SEED } \\ \text { WT. (g) } \end{gathered}$	DAYS TO FLOWER	DAYS TO MATURITY	$\begin{gathered} \text { LODGING } \\ (1-5) \\ \hline \end{gathered}$	$\begin{aligned} & \text { HEIGHT } \\ & (\mathrm{cm}) \end{aligned}$	DES. SCORE
P07863	AN-37/P02630, ELDORADO	1	35.0	40.8	45.0	105.0	2.5	48.5	4.5
111255	PT8-6	23	33.5	38.8	45.0	98.0	3.5	46.0	3.0
109123	Sierra/Buster, Medicine Hat	3	32.2	43.7	43.0	96.0	2.5	42.5	3.0
P09425	P00225/USPT-CBB-6	6	32.0	39.1	44.0	97.0	2.5	48.0	4.0
P12610	P08362/P08401	33	31.9	38.3	42.0	99.0	1.0	54.5	5.5
P12609	P08362/P08401	32	31.8	36.1	44.0	99.0	1.0	53.5	5.0
P11506	P06121/P05436	16	31.6	36.7	44.0	98.0	2.0	52.0	4.0
P12603	P07406/P08401	26	31.5	37.7	47.0	102.0	1.5	54.0	5.3
107113	PNE-6-94-75/Kodiak, LAPAZ	2	31.3	38.8	46.0	97.0	2.0	48.5	4.0
P08161	MATTERHORN/EMP 507	10	30.8	35.4	45.0	102.0	2.5	48.0	3.8
P12604	P07406/P08401	27	30.6	38.8	45.0	99.0	2.0	54.0	5.3
P08162	MATTERHORN/EMP 507	11	30.5	32.3	44.0	99.0	3.0	45.0	3.5
P11518	SANTA FE/P07806	9	30.0	38.2	50.0	102.0	3.0	48.5	4.8
106249	ND020069, LARIAT	5	29.9	41.7	46.0	102.0	3.5	45.0	3.0
P08403	P05463/USPT-CBB-5	4	29.7	33.3	44.0	97.0	2.0	48.5	4.5
P11519	SANTA FE/P07806	15	29.6	40.2	46.0	102.0	2.5	48.5	5.3
P11517	P06131//P06137 / P05436	17	29.6	42.2	45.0	98.0	2.0	46.5	3.8
P12612	P08381/P08401	35	29.2	33.2	45.0	99.0	2.0	49.0	4.3
P12611	P08362/P08401	34	29.0	34.5	44.0	99.0	1.0	53.0	4.5
P11526	SANTA FE/P07806	18	28.8	37.1	43.0	99.0	2.0	46.0	3.8
P12613	P08381/P08401	36	28.8	35.0	45.0	98.0	2.0	50.5	4.5
P12607	P07406/P08401	30	28.6	38.3	44.0	98.0	2.0	47.5	4.0
P12606	P07406/P08401	29	28.3	36.5	46.0	99.0	2.0	53.5	4.3
P11523	P04203/P06125	20	28.3	37.0	43.0	98.0	2.0	50.0	4.0
P11525	I06228/P04203	14	28.1	36.0	49.0	99.0	3.0	45.0	3.3
P12605	P07406/P08401	28	27.9	35.8	47.0	101.0	2.0	52.5	4.5
P12608	P08327/P08401	31	27.1	31.8	45.0	100.0	2.0	50.5	4.5
P12601	P07405//I06228/P07405	24	24.3	37.2	46.0	102.0	2.0	52.0	3.8
P11522	P04203/P06125	12	24.2	34.9	43.0	99.0	2.0	49.0	3.8
P11511	G08215/I06228	21	23.8	34.0	46.0	104.0	3.0	48.0	3.8
P11456	G07302/SANTA FE	13	23.8	33.3	44.0	103.0	3.5	42.5	3.0
P11507	P04203/AZTEC	19	22.0	34.0	44.0	102.0	2.5	47.5	3.8
P12602	P07405//I06228/P07405	25	21.7	38.1	44.0	101.0	2.0	51.5	3.3
P11509	G08215/P07406	22	21.5	40.9	45.0	103.0	2.5	49.0	3.3
108933	37-2, USPT-WM-12	7	19.3	32.9	45.0	105.0	3.5	44.0	2.8
P04205	P99119/G99750, SANTA FE	8	16.2	36.1	44.0	103.0	3.5	42.5	3.0
MEAN (36)			28.1	36.9	44.7	99.9	2.3	48.8	4.0
LSD (0.05)			3.1	2.7	1.5	2.7	0.5	0.5	0.6
CV (\%)			9.5	6.2	2.0	1.6	13.4	0.6	13.0

EXPERIMENT 2109 STANDARD RED AND PINK YIELD TRIAL							PLANTED: 6/7/12		
NAME	PEDIGREE	ENTRY	YIELD CWT IACRE	$\begin{gathered} 100 \text { SEED } \\ \text { WT. (g) } \end{gathered}$	DAYS TO FLOWER	DAYS TO MATURITY	$\begin{gathered} \text { LODGING } \\ (1-5) \end{gathered}$	$\begin{aligned} & \text { HEIGHT } \\ & \text { (cm) } \\ & \hline \end{aligned}$	DES. SCORE
S11703	R06418/S07809	19	31.4	32.3	40.0	98.0	3.5	44.5	3.0
508418	S02754/S04503, ROSETTA	2	31.3	31.1	43.0	98.0	1.5	50.5	5.5
R11608	NOT ON FILE	14	31.3	33.9	44.0	102.0	2.0	52.5	4.0
R11633	R06412//P06121/P05436	9	31.2	33.8	44.0	100.0	3.0	46.5	4.0
R11616	R08504/SER26	17	29.8	34.2	42.0	102.0	2.5	46.5	4.0
R11614	R08504/SER26	15	29.5	35.9	44.0	101.0	2.5	49.0	4.5
R11615	R08504/SER26	10	29.4	34.0	45.0	102.0	2.0	50.0	4.0
R11604	R02189//R06414/RAB651	18	28.8	33.3	43.0	102.0	2.0	49.0	4.5
S07501	Sedona/ABCP \#15//R02205	1	28.5	35.2	48.0	104.0	3.0	47.0	4.0
S11701	S04504/R06420	12	27.8	30.6	40.0	99.0	2.5	45.5	3.0
S11610	R06412/IS07501/R06422	13	27.8	31.1	43.0	99.0	4.0	44.5	3.5
R11630	R08504/SER 21	26	27.7	28.8	41.0	98.0	2.0	50.5	5.0
S11631	R06412/X08702	21	27.4	28.1	43.0	99.0	3.0	45.5	4.0
S00809	R94142/X94076, SEDONA	3	27.4	38.0	46.0	100.0	3.0	45.5	3.5
R11618	R08504/SER26	27	27.2	32.9	42.0	99.0	2.0	46.5	3.5
I11227	PK10-8	29	26.5	29.8	41.0	98.0	4.0	45.0	3.0
110126	PS02-050-2	6	26.3	31.2	40.0	101.0	2.0	48.0	4.0
R11629	R08504/AMADEUS 77	22	26.2	34.4	41.0	101.0	1.5	55.0	4.0
R11611	R06412/IS07501/R06422	20	26.0	33.5	43.0	101.0	4.0	41.5	3.0
R11610	R06412/IS07501/R06422	8	25.9	31.6	45.0	101.0	4.0	41.5	3.0
S11707	S04505//PK 7-5/R06420	11	25.4	36.6	42.0	102.0	3.0	46.0	3.5
R11627	R06427/RAB655//R06420	24	24.9	31.0	41.0	99.0	3.0	44.0	3.0
R11617	R08504/SER26	25	23.9	33.9	43.0	102.0	2.5	48.0	4.0
R09506	R06249/Merlot	7	23.9	34.4	42.0	103.0	2.0	52.5	3.0
I11231	PK10-24	30	23.8	36.5	41.0	104.0	4.0	46.0	3.0
R11607	S06410/R06422	16	22.9	34.3	43.0	101.0	2.5	47.0	3.5
109208	NDZ06249, RIO ROJO	4	22.4	27.9	40.0	103.0	2.5	47.0	3.0
R98026	R94037/R94161, MERLOT	5	22.2	36.8	48.0	105.0	3.0	48.5	3.5
S11706	S04505//TARS SR05/R02002	28	22.0	21.9	40.0	100.0	2.0	49.0	3.5
R11632	S08406/S07809	23	21.6	32.2	43.0	99.0	2.0	47.5	4.0
MEAN (30)			26.7	32.6	42.6	100.6	2.7	47.3	3.7
LSD (0.05)			3.2	2.2	1.9	1.4	0.6	2.6	0.8
CV (\%)			10.2	5.7	2.6	0.8	12.9	3.2	12.7

EXPERIMENT 2110 STANDARD FLOR DE MAYO YIELD TRIAL							PLANTED: 6/7/12		
NAME	PEDIGREE	ENTRY	YIELD CWT IACRE	$\begin{gathered} 100 \text { SEED } \\ \text { WT. (g) } \\ \hline \end{gathered}$	DAYS TO FLOWER	DAYS TO MATURITY	$\begin{gathered} \text { LODGING } \\ (1-5) \end{gathered}$	$\begin{aligned} & \text { HEIGHT } \\ & (\mathrm{cm}) \\ & \hline \end{aligned}$	DES. SCORE
R11801FJ	X07712 / X07721	8	33.6	35.3	38.0	100.0	3.0	48.3	5.3
R11802FJ	X07712 / X07721	7	30.2	36.2	41.0	103.0	3.0	49.0	5.0
R11806FM	X07714 / X07710	4	30.0	28.1	49.0	106.0	4.0	46.3	5.0
R11808FM	X07714 / X07710	3	27.3	26.4	49.0	105.0	3.7	47.0	5.0
R11807FM	X07714 / X07710	13	26.2	28.1	49.0	105.0	4.0	46.3	5.0
R11803FJ	X07712 / X07721	2	25.7	33.6	41.0	100.0	3.0	49.0	4.7
R11812FM	X07714 / X07710	15	25.6	27.4	49.0	108.0	4.0	44.0	3.7
R11817FJ	X07717 / X07710	1	24.9	33.4	45.0	103.0	4.3	41.7	3.3
R11811FM	X07714 / X07710	10	24.9	30.5	49.0	107.0	4.0	45.7	4.3
R11815FM	X07717 / X07710	14	24.3	27.4	48.0	106.0	4.0	45.3	4.3
R11804FM	X07714 / X07710	5	23.3	26.2	49.0	106.0	3.7	47.0	4.3
R11805FM	X07714 / X07710	9	23.0	28.3	50.0	107.0	4.3	45.3	3.7
R11809FM	X07714 / X07710	6	21.7	27.4	46.0	106.0	3.3	47.3	4.3
R11810FM	X07714 / X07710	12	21.4	25.6	49.0	107.0	3.7	47.0	4.0
I11215FM	FM EUGENIA	16	20.9	30.4	46.0	109.0	4.7	41.3	3.0
R11814FM	X07714 / X07710	11	18.3	29.1	49.0	109.0	3.7	45.3	3.3
MEAN (16)			25.1	29.6	46.6	105.5	3.8	46.0	4.3
LSD (0.05)			5.4	2.1	2.4	2.1	0.5	2.1	0.7
CV (\%)			15.3	5.0	2.8	1.4	10.3	3.3	12.2

EXPERIMENT 2111 PRELIMINARY GREAT NORTHERN YIELD TRIAL							PLANTED: 6/7/12		
NAME	PEDIGREE	ENTRY	YIELD CWT IACRE	$\begin{gathered} 100 \text { SEED } \\ \text { WT. (g) } \end{gathered}$	DAYS TO FLOWER	DAYS TO MATURITY	$\begin{gathered} \text { LODGING } \\ (1-5) \end{gathered}$	$\begin{aligned} & \text { HEIGHT } \\ & \text { (cm) } \\ & \hline \end{aligned}$	DES. SCORE
G12502	P08410/G07302	1	31.5	34.7	42.0	98.0	1.7	48.7	4.7
G12503	P08410/G07302	2	30.6	32.7	43.0	98.0	2.0	48.3	4.7
G12504	P08410/G07302	3	29.3	34.1	43.0	99.0	1.7	49.0	4.0
G12508	P08410/G08275	7	28.5	34.3	43.0	100.0	2.0	53.3	5.7
G93414	MATTERHORN	15	27.2	32.1	41.0	100.0	3.0	47.0	3.7
G12903	G07321/FUJI	11	25.8	23.1	41.0	103.0	2.3	48.7	4.3
G12901	G07321/FUJI	9	25.5	25.4	44.0	103.0	2.0	52.0	4.7
G12902	G07321/FUJI	10	25.4	21.5	40.0	101.0	2.3	48.3	4.3
G12507	P08410/G08275	6	25.2	31.7	42.0	102.0	1.7	53.3	5.0
G12509	P08410/G08275	8	23.9	32.7	42.0	100.0	1.7	52.3	5.0
G12904	G07321/ FUJI	12	23.5	24.0	41.0	104.0	2.0	51.3	4.0
G12506	P08410/G08275	5	20.8	23.7	43.0	105.0	2.0	49.7	4.0
G12905	G07321/FUJI	13	19.4	24.2	43.0	106.0	2.3	50.3	3.3
G05922	HIME TEBO*4/MATTERHORN,FUJI	16	18.5	26.3	42.0	105.0	2.7	45.7	3.7
G12505	P08410/G08275	4	18.2	31.9	41.0	103.0	2.3	50.0	4.0
G12906	G07321/FUJI	14	16.0	30.7	41.0	105.0	2.3	49.3	3.7
MEAN (16)			24.3	28.9	42.1	102.0	2.1	49.8	4.3
LSD (0.05)			3.5	2.8	1.8	1.9	0.4	2.1	0.4
CV (\%)			10.3	6.9	2.3	1.3	14.5	3.0	5.9

EXPERIMENT 2112 PRELIMINARY RED AND PINK YIELD TRIAL							PLANTED: 6/7/12		
NAME	PEDIGREE	ENTRY	YIELD CWT IACRE	$\begin{gathered} 100 \text { SEED } \\ \text { WT. (g) } \end{gathered}$	DAYS TO FLOWER	DAYS TO MATURITY	$\begin{gathered} \text { LODGING } \\ (1-5) \\ \hline \end{gathered}$	$\begin{aligned} & \text { HEIGHT } \\ & \text { (cm) } \end{aligned}$	DES. SCORE
S12910	PK9-7/Rosetta	84	36.7	36.7	42.0	97.0	3.0	45.7	3.7
R12859	R08512/SR9-5	59	36.6	35.3	43.0	98.0	1.3	55.7	5.7
S12905	Rosetta/NDZ06209	79	36.1	33.8	44.0	97.0	1.7	52.0	5.0
S08418	S02754/S04503, ROSETTA	89	36.0	37.4	42.0	98.0	2.0	52.7	5.3
R12832	SR9-5/Merlot	32	35.8	37.3	44.0	100.0	2.0	50.3	3.3
S12911	PK9-7/Rosetta	85	35.2	36.5	43.0	97.0	2.7	48.0	4.0
R12860	R08512/SR9-5	60	35.2	37.3	41.0	98.0	1.7	51.7	4.3
R12853	NDZ06209/R08516	53	34.8	37.4	45.0	96.0	3.0	46.7	3.7
R12804	Merlot/NDZ06209	4	34.6	37.2	43.0	99.0	2.0	53.0	4.7
S12903	Rosetta/PK9-4	77	34.5	28.4	44.0	97.0	1.7	50.3	5.3
R12824	R09505/NDZ06209	24	34.4	36.7	43.0	96.0	1.3	49.7	5.7
S12904	Rosetta/PK9-4	78	34.2	33.5	43.0	97.0	2.0	52.0	6.0
R12873	Rosetta/NDZ06209	73	34.1	31.8	44.0	99.0	2.3	49.7	5.3
R12801	R08515//R06420/SER 26	1	33.8	39.0	44.0	100.0	2.3	49.7	4.0
S12909	PK9-7/Rosetta	83	33.6	35.4	44.0	98.0	2.7	47.0	3.7
R12855	R08512/SR9-5	55	33.4	34.2	44.0	99.0	2.0	54.0	5.3
S12906	Rosetta/NDZ06209	80	33.1	35.6	42.0	96.0	2.7	48.7	4.3
R12849	NDZ06209/R08516	49	32.9	31.8	50.0	99.0	3.3	48.3	4.0
R12813	R06415/NDZ06209	13	32.7	31.2	43.0	99.0	2.3	47.3	4.0
R12857	R08512/SR9-5	57	32.7	36.3	43.0	97.0	1.0	54.7	5.0
R12864	R02085/SR9-2	64	32.3	34.7	43.0	96.0	1.3	53.7	4.7
R12833	SR9-5/Merlot	33	32.3	36.1	43.0	96.0	1.3	54.7	4.3
R12850	NDZ06209/R08516	50	32.1	33.2	49.0	102.0	2.3	55.0	4.3
R12874	Rosetta/NDZ06209	74	32.1	30.4	44.0	95.0	2.0	50.0	4.7
R12851	NDZ06209/R08516	51	31.9	29.6	44.0	97.0	2.7	48.7	5.0
R12846	NDZ06209/Merlot	46	31.7	31.6	48.0	98.0	3.0	46.7	3.7
R12845	SR9-5/R09508	45	31.7	32.6	48.0	102.0	1.7	56.3	4.3
R12814	R06415/NDZ06209	14	31.5	34.2	44.0	99.0	2.7	47.3	4.0
R12852	NDZ06209/R08516	52	31.4	32.0	43.0	98.0	2.0	51.7	5.0
R12858	R08512/SR9-5	58	31.4	34.1	42.0	100.0	1.7	53.7	5.0
S12908	PK9-4/S08410	82	31.3	36.1	44.0	98.0	2.3	49.3	4.7
R12843	SR9-5/R09508	43	31.0	34.0	50.0	99.0	2.3	53.3	4.7
R12866	R02085/SR9-2	66	31.0	35.3	43.0	96.0	2.7	48.7	4.0
R12844	SR9-5/R09508	44	30.9	35.4	47.0	100.0	1.3	56.0	4.7
R12828	R09505/NDZ06209	28	30.5	37.1	42.0	98.0	1.7	53.3	5.7
R12805	Merlot/NDZ06209	5	30.5	28.8	47.0	98.0	2.3	55.7	4.0
R12812	R06415/NDZ06209	12	30.4	37.6	44.0	101.0	3.3	44.7	3.7
R12802	Merlot/SR9-2	2	30.4	34.8	46.0	101.0	2.7	52.0	4.0
R12818	R08504/NDZ06249	18	30.3	32.6	45.0	98.0	1.7	52.3	5.3
R12840	SR9-5/R02072	40	30.2	32.3	43.0	100.0	1.7	55.0	4.3

EXPERIMENT 2112 PRELIMINARY RED AND PINK YIELD TRIAL							PLANTED: 6/7/12		
NAME	PEDIGREE	ENTRY	YIELD CWT IACRE	$\begin{gathered} 100 \text { SEED } \\ \text { WT. (g) } \end{gathered}$	DAYS TO FLOWER	DAYS TO MATURITY	$\begin{gathered} \text { LODGING } \\ (1-5) \end{gathered}$	HEIGHT (cm)	DES. SCORE
R12807	Merlot/NDZ06209	7	29.9	36.3	44.0	96.0	2.3	47.7	4.3
R12820	R08504/NDZ06249	20	29.6	34.3	42.0	99.0	2.0	52.3	5.3
S12907	PK9-4/S08410	81	29.5	39.5	45.0	97.0	2.7	46.7	3.7
R12856	R08512/SR9-5	56	29.3	36.3	42.0	99.0	2.0	53.3	4.0
R12823	R08515/NDZ06249	23	29.1	33.1	42.0	101.0	2.7	50.0	5.3
R12842	SR9-5/R09508	42	29.0	26.4	50.0	101.0	2.0	57.0	4.7
R12819	R08504/NDZ06249	19	29.0	34.2	45.0	96.0	2.0	49.0	4.0
R12872	R02082/SR9-2	72	28.8	34.0	43.0	102.0	3.3	46.3	3.0
S12902	S08410//S07809/SER 26	76	28.8	33.5	49.0	102.0	3.0	48.7	3.3
R12841	SR9-5/R09508	41	28.8	28.4	49.0	98.0	2.3	52.0	5.7
R12826	R09505/NDZ06209	26	28.8	36.5	42.0	100.0	2.0	49.0	4.3
S00809	R94142/X94076, SEDONA	88	28.7	39.1	47.0	98.0	3.0	48.3	4.0
R12861	R02085/SR9-2	61	28.7	32.8	42.0	96.0	1.3	50.7	4.0
S12901	SR9-5/R02072	75	28.5	33.2	43.0	97.0	1.0	54.3	4.7
R12806	Merlot/NDZ06209	6	28.3	38.3	42.0	97.0	1.7	47.7	4.3
R12862	R02085/SR9-2	62	28.1	37.5	44.0	97.0	1.7	50.0	4.0
R12827	R09505/NDZ06209	27	28.0	36.1	41.0	98.0	2.0	49.3	4.7
R12835	SR9-5/Merlot	35	27.9	31.8	49.0	102.0	1.7	55.3	3.3
R12810	R06415/R09508	10	27.9	26.0	45.0	98.0	2.0	52.3	4.7
R12822	R08512/R09508	22	27.7	32.9	43.0	97.0	2.0	52.0	4.3
R12867	NDZ06209/R06413	67	27.7	30.6	43.0	97.0	1.7	48.7	4.0
R12825	R09505/NDZ06209	25	27.6	35.5	41.0	98.0	2.3	48.0	4.7
R12829	R09505/NDZ06209	29	27.5	34.9	41.0	96.0	1.7	49.7	5.0
R12863	R02085/SR9-2	63	27.5	37.0	44.0	96.0	1.7	51.7	4.0
R12815	R08504/NDZ06249	15	27.4	36.4	42.0	67.0	2.0	53.7	5.0
R12803	Merlot/NDZ06209	3	27.3	32.4	45.0	99.0	1.7	51.7	4.3
110126	PS02-050-2	87	27.1	31.0	42.0	99.0	2.0	51.7	5.0
R12811	R06415/NDZ06209	11	27.0	31.2	43.0	96.0	2.0	45.7	3.7
R12838	SR9-5/R02072	38	26.5	33.2	45.0	103.0	1.7	56.0	3.7
R12848	NDZ06209/Merlot	48	26.5	36.6	50.0	100.0	3.0	47.7	3.3
R12831	SR9-2/R08516	31	26.4	35.5	42.0	96.0	3.0	48.3	3.3
R12868	NDZ06209/R06413	68	26.2	32.5	45.0	100.0	2.7	46.0	3.3
R12834	SR9-5/Merlot	34	26.1	38.9	49.0	103.0	2.0	53.0	3.7
R98026	R94037/R94161, MERLOT	86	25.9	37.5	48.0	103.0	3.0	49.3	3.7
R12847	NDZ06209/Merlot	47	25.8	34.7	49.0	102.0	3.7	46.0	3.0
R12816	R08504/NDZ06249	16	25.3	32.4	43.0	101.0	2.0	54.0	4.0
R12821	R08512/R09508	21	25.3	29.7	45.0	95.0	2.3	48.0	4.3
R12871	NDZ06249/R08516	71	25.2	30.1	50.0	101.0	2.7	52.3	4.3
R12854	NDZ06249/Merlot	54	25.0	30.4	51.0	103.0	1.7	56.0	4.0
R12809	R06415/R09508	9	23.9	24.9	46.0	96.0	2.0	53.3	4.3

EXPERIMENT 2112 PRELIMINARY RED AND PINK YIELD TRIAL							PLANTED: 6/7/12		
NAME	PEDIGREE	ENTRY	YIELD CWT IACRE	$\begin{gathered} 100 \text { SEED } \\ \text { WT. (g) } \end{gathered}$	DAYS TO FLOWER	DAYS TO MATURITY	$\begin{gathered} \text { LODGING } \\ (1-5) \end{gathered}$	HEIGHT (cm)	DES. SCORE
R12817	R08504/NDZ06249	17	23.9	37.1	42.0	101.0	2.0	51.7	4.3
R12865	R02085/SR9-2	65	23.7	30.8	46.0	102.0	2.7	52.7	3.7
R12808	R06415/R09508	8	23.3	27.1	45.0	98.0	2.0	50.7	4.3
R12830	R09508/Merlot	30	23.0	32.9	53.0	104.0	2.7	47.3	2.7
R12836	SR9-5/Merlot	36	22.9	33.1	50.0	106.0	2.7	51.7	2.7
R12837	SR9-5/Merlot	37	22.2	37.2	50.0	105.0	2.0	53.7	3.7
112308	Rojo Seda	90	17.4	25.2	46.0	102.0	3.0	47.0	3.3
R12839	SR9-5/R02072	39	16.8	34.1	46.0	105.0	1.3	56.3	3.0
R12870	NDZ06249/R09508	70	15.2	31.4	47.0	104.0	1.7	53.3	3.3
R12869	NDZ06249/R09508	69	10.3	30.2	46.0	101.0	1.3	54.7	4.0
MEAN (90)			29.1	33.8	44.6	98.7	2.2	51.0	4.3
LSD (0.05)			4.1	2.5	0.7	8.6	0.5	2.3	0.8
CV (\%)			10.5	5.4	1.0	6.5	17.4	3.4	13.3

EXPERIMENT 2113 PINTO GENETIC GAIN YIELD TRIAL							PLANTED: 6/7/12		
NAME	PEDIGREE	ENTRY	YIELD CWT IACRE	$\begin{gathered} 100 \text { SEED } \\ \text { WT. (g) } \end{gathered}$	DAYS TO FLOWER	DAYS TO MATURITY	$\begin{gathered} \text { LODGING } \\ (1-5) \end{gathered}$	$\begin{aligned} & \text { HEIGHT } \\ & (\mathrm{cm}) \end{aligned}$	DES. SCORE
BC168	Ul-196	12	35.7	38.0	44.0	98.0	4.7	43.7	3.0
BC300	Lariat	19	31.9	43.0	44.0	102.0	3.0	48.3	4.0
BC301	Stampede	18	31.7	41.9	43.0	99.0	2.0	52.0	5.0
BC016	Bill Z	8	31.3	37.1	41.0	95.0	5.0	41.3	3.0
BC177	Ul-111	1	31.1	40.0	44.0	94.0	4.3	42.3	3.0
BC120	La Paz	20	31.0	36.4	46.0	101.0	2.0	52.7	5.0
BC021	Olathe	5	29.3	40.2	42.0	94.0	5.0	42.0	3.0
BC070	Sierra	4	29.1	35.5	50.0	103.0	3.3	47.0	4.0
BC167	Ul-126	9	29.0	39.1	43.0	96.0	4.3	43.0	3.0
BC231	Othello	13	27.9	41.2	40.0	94.0	4.3	43.7	3.0
BC020	Montrose	15	27.2	37.8	44.0	98.0	5.0	41.0	3.0
BC299	Maverick	14	26.5	35.2	42.0	95.0	3.7	44.7	3.0
BC161	Common Pinto	3	26.2	36.6	43.0	93.0	5.0	41.0	3.0
BC178	Ul-114	2	24.7	35.0	41.0	94.0	4.7	41.7	3.0
BC196	Chase	11	24.7	37.9	43.0	97.0	4.0	43.3	3.0
BC228	Nodak	10	23.9	34.9	40.0	94.0	4.3	41.3	3.0
BC115	Remington	7	23.0	33.1	41.0	96.0	3.0	47.7	3.7
BC110	Topaz	6	21.2	35.9	41.0	94.0	4.3	43.3	3.0
BC024	Croissant	17	20.5	31.3	44.0	104.0	3.0	48.3	4.0
BC386	Buster	16	13.7	30.0	42.0	103.0	3.3	47.7	4.0
MEAN (20)			27.0	37.0	42.7	97.3	3.9	44.8	3.4
LSD (0.05)			3.6	2.8	1.6	2.2	0.6	1.7	0.2
CV (\%)			9.7	5.5	2.1	1.6	10.2	2.7	3.8

EXPERIMENT 2114 MRPN/CDBN YIELD TRIAL							PLANTED: 6/7/12		
NAME	PEDIGREE	ENTRY	YIELD CWT IACRE	$\begin{gathered} 100 \text { SEED } \\ \text { WT. (g) } \end{gathered}$	DAYS TO FLOWER	DAYS TO MATURITY	$\begin{gathered} \text { LODGING } \\ (1-5) \end{gathered}$	$\begin{aligned} & \text { HEIGHT } \\ & \text { (cm) } \end{aligned}$	DES. SCORE
P07863	AN-37/P02630, ELDORADO	31	36.0	39.6	48.0	103.0	3.0	49.3	4.0
P08161	MATTERHORN/EMP 507	32	33.9	35.3	48.0	101.0	2.5	51.4	4.0
111257	PT9-6	3	30.2	38.7	47.0	97.0	2.0	49.9	4.0
I12310	CO 90848-11	19	29.9	39.7	49.0	100.0	1.5	54.0	4.5
S08418	S02754/S04503, ROSETTA	9	29.1	33.5	48.0	96.0	2.0	53.6	6.0
112315	CO 91160-11	24	28.6	36.6	48.0	99.0	3.0	47.1	4.0
112307	ISB-24	8	28.5	38.6	47.0	95.0	3.0	47.2	3.5
112324	NE2-11-22	40	27.9	41.5	48.0	102.0	3.5	47.7	3.5
109205	PK9-4	10	27.7	39.1	47.0	95.0	2.5	46.7	3.0
G11464	G07309//G07302/BMN13	37	27.0	43.5	47.0	99.0	2.0	51.2	4.5
112309	UCD-9634	11	26.9	29.9	50.0	101.0	3.0	47.8	3.5
111260	ND020351-R (STAMPEDE-R)	4	26.6	38.7	48.0	100.0	2.0	53.3	4.5
P11522	P04203/P06125	33	26.3	36.8	48.0	97.0	1.0	51.7	6.0
G09303	G04207/P05437	34	26.2	31.4	47.0	101.0	2.0	51.1	4.0
G93414	MATTERHORN	17	26.1	34.4	48.0	97.0	2.0	47.7	4.0
I12314	CO 91137-03	23	25.9	39.2	47.0	97.0	2.0	47.6	4.0
111273	GN9-1	15	25.8	37.4	49.0	104.0	4.0	43.0	3.0
112317	ND080208	26	25.8	36.9	49.0	104.0	3.0	45.6	3.0
112313	CO 91007-11	22	25.5	35.3	50.0	101.0	4.0	46.9	3.5
184002	NW410//VICTOR/AURORA, OTHELLO	1	25.5	37.2	48.0	93.0	5.0	40.8	3.0
G08254	G04514/Matterhorn	35	25.0	34.7	48.0	98.0	2.0	51.3	4.5
I12323	NE1-11-20	39	24.9	33.8	49.0	102.0	4.0	43.6	3.0
112316	CO 91212-10	25	24.8	35.3	47.0	101.0	2.0	50.6	4.5
112325	NE2-11-24	41	24.8	46.5	47.0	101.0	3.5	46.4	3.5
112322	NE1-11-19	38	24.6	35.7	49.0	103.0	3.0	49.0	3.5
111221	SR10-20	13	24.6	34.0	48.0	100.0	2.0	51.7	4.5
111238	ND090713	30	24.3	39.4	47.0	100.0	2.0	49.9	4.0
112311	CO 90848-14	20	23.7	38.2	47.0	95.0	2.0	48.9	4.0
112312	CO 91003-13	21	23.6	35.1	50.0	101.0	3.0	46.4	3.5
198313	CO51715, MONTROSE	18	23.3	37.0	48.0	97.0	5.0	39.8	2.5
109109	CO55646, LONG'S PEAK	2	23.3	37.2	49.0	101.0	2.0	54.7	5.5
G11404	G05220//G04207/P05437	36	23.2	34.4	48.0	102.0	2.5	49.2	3.5
110112	ND080213	27	22.8	40.1	47.0	96.0	3.0	47.2	3.5
112306	ISB-18	7	22.7	36.6	48.0	102.0	3.5	43.2	2.5
109208	NDZ06249, RIO ROJO	12	22.6	29.6	47.0	98.0	2.0	47.2	4.0
110113	ND080412	29	22.3	32.1	48.0	102.0	3.0	47.8	3.5
112305	ISB-16	6	21.6	37.4	47.0	94.0	2.5	45.8	3.0
112304	ISB-11	5	21.3	32.9	48.0	103.0	4.0	45.4	2.5
C06808	I01800/C03129, BELLAGIO	42	20.0	55.6	48.0	101.0	3.0	46.4	4.0
112318	NDZ06219	28	20.0	37.3	49.0	96.0	1.0	52.0	3.5
107142	NE-1-06-12, COYNE	14	19.6	34.5	48.0	101.0	3.0	48.4	3.5
199117	BUSTER	16	16.1	32.4	48.0	96.0	2.5	46.8	4.0
MEAN (42)		0	25.2	37.0	48.0	99.3	2.7	48.2	3.8
LSD (0.05)		0	3.6	3.1	1.0	2.0	0.7	2.2	0.2
CV (\%)		0	10.6	6.1	1.2	1.2	14.6	2.7	3.6

EXPERIMENT 2115 IRRIGATED DROUGHT YIELD TRIAL
PLANTED: 6/12/12

NAME	PEDIGREE	ENTRY	YIELD CWT IACRE	$\begin{gathered} 100 \text { SEED } \\ \text { WT. (g) } \\ \hline \end{gathered}$	DAYS TO FLOWER	DAYS TO MATURITY	$\begin{gathered} \text { LODGING } \\ (1-5) \\ \hline \end{gathered}$	$\begin{aligned} & \text { HEIGHT } \\ & \text { (cm) } \\ & \hline \end{aligned}$	DES. SCORE	BIOMASS	HARVEST INDEX
BC234	PT7-2	67	34.1	40.0	44.0	100.0	3.0	48.3	3.0	2.8	50.9
BC286	A285	78	32.7	20.8	45.0	102.0	4.0	41.7	3.0	4.3	39.1
BC387	Medicine Hat	96	32.4	42.3	41.0	95.0	2.0	46.7	3.7	2.8	49.2
BC120	La Paz	34	32.0	36.5	45.0	97.0	2.0	58.3	4.0	3.7	40.1
BC386	Buster	95	31.5	37.4	44.0	95.0	3.0	43.3	3.0	3.1	45.4
BC028	PR 0340-3-3-1	79	31.0	28.3	45.0	98.0	2.7	55.0	4.0	3.2	43.4
BC300	Lariat	86	31.0	40.8	44.0	100.0	3.0	51.7	4.3	3.7	37.9
BC093	Merlot	28	30.9	37.5	44.0	97.0	2.7	58.3	5.3	3.8	39.9
BC070	Sierra	20	30.1	32.6	47.0	108.0	4.3	38.3	1.0	3.8	35.1
BC062	Domino	17	30.1	19.1	45.0	95.0	2.3	55.0	4.0	3.4	41.8
BC358	Orion	93	30.0	32.9	39.0	95.0	3.3	40.0	3.0	2.7	48.6
BC016	Bill Z	2	29.8	35.3	41.0	96.0	5.0	21.7	1.0	3.0	44.8
BC302	ND-307	88	29.7	40.1	40.0	97.0	3.0	41.7	3.0	3.7	41.6
BC299	Maverick	85	29.6	38.1	40.0	95.0	4.3	35.0	2.0	3.1	42.9
BC080	Matterhorn	23	29.5	36.3	36.0	95.0	3.7	46.7	3.3	2.6	50.6
BC216	19365-31	61	29.3	25.2	44.0	68.0	4.3	36.7	1.7	3.1	43.0
BC124	Shania	35	29.1	20.5	45.0	102.0	2.3	61.7	3.7	3.1	37.1
BC020	Montrose	4	29.0	39.2	45.0	95.0	3.7	18.3	1.0	2.3	50.7
BC099	S08418, ROSETTA	54	28.9	32.5	44.0	96.0	2.3	50.0	3.7	2.7	47.7
BC296	GN9-4	82	28.9	38.2	45.0	96.0	2.3	51.7	4.0	3.0	45.5
BC222	Quincy	62	28.8	40.6	44.0	98.0	4.7	30.0	1.0	3.1	41.8
BC243	USRM-20	71	28.8	41.5	44.0	98.0	4.7	36.7	1.7	3.2	39.0
BC232	NW-590	66	28.5	32.8	45.0	101.0	5.0	25.0	1.0	3.0	39.7
BC079	Kodiak	22	28.4	43.4	44.0	95.0	4.0	33.3	2.3	2.9	48.1
BC075	Raven	21	28.3	18.7	45.0	95.0	1.0	65.0	5.3	3.4	39.0
BC290	BAT 477	80	28.1	24.2	45.0	97.0	4.0	26.7	1.7	3.0	40.2
BC196	Chase	58	28.1	35.5	43.0	95.0	5.0	23.3	1.0	3.2	40.7
BC068	Mayflower	19	28.1	21.2	45.0	98.0	1.0	60.0	5.0	3.1	38.5
BC038	CENTA Pupil	12	27.8	23.2	45.0	95.0	1.7	51.7	3.7	2.9	43.5
BC091	P07863, ELDORADO	3	27.7	39.7	42.0	107.0	3.7	48.3	2.0	3.8	35.1
BC088	Zorro	25	27.6	20.0	45.0	95.0	1.3	65.0	5.3	3.3	41.6
BC267	Victor	73	27.6	33.9	45.0	103.0	5.0	26.7	1.0	4.6	28.0
BC192	Weihing	55	27.6	35.8	39.0	97.0	3.3	38.3	2.3	2.9	40.1
BC133	Medalist	38	27.6	19.1	43.0	98.0	2.0	63.3	5.3	3.3	40.5
BC281	Gloria	77	27.4	35.0	46.0	102.0	5.0	28.3	1.0	3.3	36.1
BC041	Aifi Wuriti	13	27.4	24.1	45.0	95.0	3.0	51.7	3.3	3.0	42.4
BC142	ROG 312	42	27.3	33.4	41.0	95.0	5.0	21.7	1.0	2.6	46.8
BC307	Eclipse	90	27.2	20.8	45.0	95.0	1.0	55.0	5.0	2.5	46.9
BC066	C-20	18	27.1	20.4	46.0	107.0	3.7	48.3	2.7	4.0	33.8
BC104	115M (Black Rhino)	30	27.0	21.9	45.0	102.0	3.0	40.0	2.0	3.4	39.4

EXPERIMENT 2115 IRRIGATED DROUGHT YIELD TRIAL
PLANTED: 6/12/12

NAME	PEDIGREE	ENTRY	YIELD CWT IACRE	$\begin{gathered} 100 \text { SEED } \\ \text { WT. (g) } \\ \hline \end{gathered}$	DAYS TO FLOWER	DAYS TO MATURITY	$\begin{gathered} \text { LODGING } \\ (1-5) \\ \hline \end{gathered}$	$\begin{aligned} & \text { HEIGHT } \\ & \text { (cm) } \\ & \hline \end{aligned}$	DES. SCORE	BIOMASS	HARVEST INDEX
BC170	UI-239	49	26.9	33.7	38.0	100.0	5.0	23.3	1.0	3.6	38.6
BC236	USPT-CBB-1	68	26.7	37.2	45.0	98.0	3.3	53.3	3.3	3.0	40.8
BC131	Pink Floyd	37	26.5	35.1	36.0	95.0	5.0	21.7	1.0	2.5	48.8
BC239	USPT-CBB-5	69	26.5	33.2	36.0	95.0	4.3	26.7	1.3	2.7	41.7
BC024	Croissant	7	26.3	33.1	47.0	98.0	3.7	50.0	3.0	2.5	44.4
BC375	Yolano	94	26.2	32.9	41.0	95.0	5.0	23.3	1.0	2.8	43.6
BC297	GN9-1	83	26.2	40.4	44.0	103.0	4.7	36.7	1.0	3.6	35.0
BC026	DOR 364	8	26.1	23.0	45.0	95.0	3.0	45.0	4.3	2.8	43.6
BC089	Santa Fe	26	26.1	41.6	38.0	97.0	3.7	41.7	3.0	2.9	43.3
BC161	Common Pinto	45	26.0	34.6	42.0	96.0	5.0	21.7	1.0	2.8	41.6
BC291	SEA 10	81	25.9	35.4	41.0	98.0	5.0	21.7	1.0	3.0	42.3
BC195	ABCP-8	57	25.8	34.5	45.0	102.0	5.0	21.7	1.0	3.3	37.9
BC204	NE2-09-3	59	25.8	42.2	44.0	98.0	3.7	36.7	2.0	2.7	40.4
BC178	UI-114	52	25.8	35.9	45.0	95.0	5.0	21.7	1.0	3.0	45.3
BC160	Ul-537	44	25.8	38.0	35.0	95.0	5.0	21.7	1.0	3.1	44.4
BC109	Poncho	31	25.5	36.1	43.0	95.0	5.0	21.7	1.0	2.6	46.8
BC022	Shiny Crow	5	25.3	21.7	45.0	98.0	4.3	26.7	1.7	2.8	37.4
BC094	Sedona	29	25.1	37.5	45.0	95.0	4.0	45.0	3.3	2.8	39.8
BC048	F07-449-9-3	14	24.9	28.3	45.0	98.0	1.3	61.7	4.7	2.7	44.7
BC280	Harold	76	24.9	33.4	45.0	110.0	5.0	38.3	1.0	5.0	24.5
BC007	BelNeb-RR-1	1	24.7	36.2	37.0	96.0	5.0	23.3	1.0	2.6	45.0
BC164	Kimberly	47	24.7	35.1	44.0	96.0	4.3	23.3	1.3	2.5	44.0
BC279	Roza	75	24.7	33.8	48.0	105.0	5.0	28.3	1.0	3.0	32.2
BC138	Marquis	41	24.6	32.5	41.0	96.0	5.0	28.3	1.0	2.9	39.0
BC162	Common Red Mexican	46	24.6	34.6	44.0	103.0	5.0	26.7	1.0	3.3	36.1
BC228	Nodak	64	24.6	34.2	37.0	95.0	5.0	25.0	1.0	2.7	45.6
BC127	Schooner	36	24.3	18.0	43.0	98.0	4.3	36.7	2.0	2.9	39.1
BC278	Viva	74	24.3	30.1	45.0	115.0	5.0	30.0	1.0	5.1	24.2
BC134	Navigator	39	24.0	21.7	45.0	95.0	1.0	65.0	5.3	2.7	42.8
BC231	Othello	65	23.9	36.6	43.0	95.0	5.0	20.0	1.0	2.5	47.1
108959	SER16 (CIAT)	6	23.8	24.4	44.0	95.0	3.7	35.0	2.3	2.7	37.1
BC301	Stampede	87	23.8	36.7	44.0	95.0	2.0	48.3	4.3	2.6	44.4
BC111	Buckskin	33	23.8	38.1	43.0	95.0	5.0	23.3	1.0	2.7	41.7
BC306	Avalanche	89	23.7	20.6	44.0	97.0	2.3	56.7	4.0	2.9	36.4
BC242	NW-63	70	23.6	34.5	44.0	108.0	5.0	25.0	1.0	3.2	34.8
BC085	Jaguar	24	23.4	18.8	45.0	95.0	2.0	53.3	5.0	3.0	41.6
BC174	US-1140	50	23.3	34.2	36.0	95.0	5.0	21.7	1.0	2.8	43.2
BC033	PR 0443-151	10	23.3	19.5	45.0	99.0	3.0	46.7	3.3	3.3	34.3
BC194	Coyne	56	23.1	37.1	45.0	98.0	2.7	50.0	3.3	3.1	34.7
BC357	Gemini	92	23.0	30.4	35.0	97.0	4.7	31.7	1.3	3.4	33.6

EXPERIMENT 2115 IRRIGATED DROUGHT YIELD TRIAL					PLANTED: 6/12/12						
NAME	PEDIGREE	ENTRY	YIELD CWT IACRE	$\begin{gathered} 100 \text { SEED } \\ \text { WT. (g) } \end{gathered}$	DAYS TO FLOWER	DAYS TO MATURITY	$\begin{gathered} \text { LODGING } \\ (1-5) \end{gathered}$	$\begin{aligned} & \text { HEIGHT } \\ & \text { (cm) } \end{aligned}$	DES. SCORE	BIOMASS	HARVEST INDEX
BC329	CDC Crocus	91	22.4	36.6	35.0	95.0	5.0	21.7	1.0	2.0	45.9
BC053	F04-2801-4-1-2	15	22.3	21.7	44.0	95.0	1.7	56.7	3.7	2.5	43.8
BC092	T-39	27	21.8	20.5	45.0	95.0	3.3	36.7	2.7	2.5	42.4
BC056	Seafarer	16	21.7	19.2	42.0	99.0	3.0	51.7	3.3	3.2	34.9
BC145	Midnight	43	21.6	18.9	47.0	99.0	2.7	50.0	3.0	2.8	32.2
BC272	Indeterminate Jamaica Red	72	21.6	37.4	45.0	95.0	3.0	45.0	2.3	2.0	44.6
BC176	Ul-59	51	21.5	31.9	45.0	95.0	5.0	21.7	1.0	2.2	41.7
BC298	PT9-17	84	21.1	38.5	44.0	98.0	4.0	36.7	2.3	2.1	45.5
BC037	IBC 301-204	11	20.9	25.6	44.0	95.0	3.3	33.3	2.3	1.9	42.1
BC110	Topaz	32	20.5	35.9	35.0	95.0	5.0	35.0	1.3	2.1	44.7
BC215	A-55	60	20.3	26.5	49.0	112.0	1.3	70.0	3.3	4.0	23.3
BC179	UI-425	53	20.3	34.0	37.0	100.0	5.0	23.3	1.0	2.5	35.0
111207	SER48 (CIAT)	48	20.1	35.6	43.0	95.0	3.3	55.0	4.0	2.2	40.1
BC137	Beryl R	40	19.6	28.9	41.0	102.0	4.7	30.0	1.0	2.6	34.4
BC031	Verano	9	17.3	23.6	44.0	99.0	2.7	40.0	2.7	1.7	42.1
BC224	TARS-VCl-4B	63	16.3	22.8	0.0	77.0	4.7	33.3	1.0	3.3	24.8
MEAN (96)			26.0	31.4	42.3	97.5	3.7	38.9	2.4	3.0	40.6
LSD (0.05)			3.9	1.9	3.1	12.2	0.9	10.3	0.9	0.7	5.2
CV (\%)			11.2	4.5	4.4	9.3	17.7	19.6	28.7	18.1	9.4

EXPERIMENT 2116 NON-IRRIGATED DROUGHT YIELD TRIAL					PLANTED: 6/12/12						
NAME	PEDIGREE	ENTRY	YIELD CWT IACRE	$\begin{aligned} & 100 \text { SEED } \\ & \text { WT. }(\mathrm{g}) \end{aligned}$	DAYS TO FLOWER	DAYS TO MATURITY	$\begin{gathered} \text { LODGING } \\ (1-5) \end{gathered}$	HEIGHT (cm)	DES. SCORE	BIOMASS	HARVEST INDEX
BC028	PR 0340-3-3-1	79	36.7	28.2	47.0	97.0	1.7	55.0	4.3	3.8	46.7
BC234	PT7-2	67	36.6	40.9	44.0	95.0	3.0	48.3	3.3	3.5	49.8
BC387	Medicine Hat	96	35.7	42.3	42.0	95.0	3.3	43.3	3.3	2.9	50.1
BC216	19365-31	61	35.4	26.4	45.0	102.0	3.7	40.0	2.3	4.2	37.8
BC091	P07863, ELDORADO	3	34.9	41.9	45.0	98.0	1.7	58.3	4.3	4.2	35.6
BC302	ND-307	88	33.7	40.1	40.0	97.0	2.7	48.3	3.3	3.4	42.6
BC079	Kodiak	22	33.5	43.0	42.0	95.0	3.3	35.0	2.3	3.0	48.6
BC232	NW-590	66	33.4	36.1	44.0	104.0	5.0	28.3	1.0	4.4	34.7
BC104	115M (Black Rhino)	30	33.2	23.0	45.0	103.0	4.0	41.7	2.3	3.9	40.9
BC120	La Paz	34	32.8	38.3	43.0	95.0	2.0	58.3	4.3	3.3	42.6
BC300	Lariat	86	31.9	43.8	44.0	100.0	3.0	45.0	3.7	3.8	38.8
BC358	Orion	93	31.8	35.0	41.0	95.0	3.3	41.7	2.7	3.0	44.7
BC124	Shania	35	31.8	20.3	45.0	95.0	1.7	50.0	4.3	3.7	37.2
BC236	USPT-CBB-1	68	31.7	39.8	45.0	96.0	4.0	48.3	3.0	3.2	41.7
BC231	Othello	65	31.6	36.8	37.0	95.0	5.0	25.0	1.0	2.8	48.1
BC062	Domino	17	31.2	19.2	46.0	95.0	1.7	58.3	5.0	3.1	43.4
BC080	Matterhorn	23	31.1	37.6	37.0	95.0	3.0	43.3	4.0	3.0	46.5
BC386	Buster	95	31.0	37.8	41.0	95.0	4.0	31.7	2.3	3.0	46.0
BC286	A285	78	30.8	22.8	45.0	98.0	4.0	45.0	2.3	3.1	42.9
BC301	Stampede	87	30.4	39.7	44.0	97.0	1.0	61.7	4.7	2.7	43.8
BC093	Merlot	28	30.4	39.8	45.0	98.0	2.7	48.3	4.0	4.1	37.0
BC297	GN9-1	83	30.2	43.0	44.0	100.0	4.7	38.3	1.3	3.8	38.2
BC094	Sedona	29	30.0	41.6	45.0	95.0	3.0	38.3	3.0	3.4	38.9
BC222	Quincy	62	30.0	42.1	43.0	98.0	5.0	25.0	1.0	3.2	43.8
BC066	C-20	18	29.9	20.0	45.0	101.0	3.3	41.7	3.7	4.1	35.4
BC131	Pink Floyd	37	29.8	37.4	36.0	95.0	5.0	28.3	1.0	2.8	48.9
BC142	ROG 312	42	29.4	37.1	38.0	96.0	5.0	26.7	1.0	3.0	45.0
BC307	Eclipse	90	29.4	21.0	43.0	95.0	1.0	51.7	5.7	3.1	43.8
BC088	Zorro	25	29.4	20.7	45.0	95.0	1.7	51.7	4.7	3.1	44.2
BC026	DOR 364	8	29.4	23.7	44.0	96.0	2.0	51.7	3.3	2.9	45.8
BC298	PT9-17	84	29.3	38.1	42.0	95.0	4.0	38.3	1.7	2.6	45.5
BC306	Avalanche	89	29.3	22.2	41.0	95.0	1.3	58.3	5.0	3.0	41.8
BC243	USRM-20	71	29.0	41.2	42.0	96.0	4.0	35.0	1.3	3.0	46.3
BC196	Chase	58	28.8	38.0	43.0	95.0	5.0	25.0	1.0	2.7	44.5
BC162	Common Red Mexican	46	28.7	35.2	43.0	103.0	5.0	28.3	1.0	3.2	37.2
BC290	BAT 477	80	28.4	26.3	41.0	100.0	3.3	36.7	2.0	2.7	43.1
BC215	A-55	60	28.3	27.0	46.0	112.0	1.3	68.3	4.0	4.7	27.1
BC138	Marquis	41	28.3	33.5	42.0	98.0	5.0	31.7	1.3	3.0	41.1
BC089	Santa Fe	26	28.2	44.3	39.0	95.0	3.7	35.0	2.3	2.8	43.3
BC020	Montrose	4	28.1	39.1	44.0	95.0	5.0	20.0	1.0	2.2	51.6

EXPERIMENT 2116 NON-IRRIGATED DROUGHT YIELD TRIAL					PLANTED: 6/12/12						
NAME	PEDIGREE	ENTRY	YIELD CWT IACRE	$\begin{aligned} & 100 \text { SEED } \\ & \text { WT. }(\mathrm{g}) \end{aligned}$	DAYS TO FLOWER	DAYS TO MATURITY	$\begin{gathered} \text { LODGING } \\ (1-5) \end{gathered}$	HEIGHT (cm)	DES. SCORE	BIOMASS	HARVEST INDEX
BC048	F07-449-9-3	14	28.1	28.2	45.0	95.0	1.7	58.3	4.7	2.9	43.6
BC299	Maverick	85	28.1	39.8	42.0	95.0	3.3	35.0	1.0	2.7	43.2
BC024	Croissant	7	27.9	34.5	46.0	95.0	3.0	45.0	3.3	3.0	43.5
BC296	GN9-4	82	27.8	39.7	42.0	95.0	2.3	51.7	4.0	3.0	45.5
BC280	Harold	76	27.7	35.9	45.0	107.0	5.0	31.7	1.0	5.5	22.8
BC092	T-39	27	27.7	21.1	44.0	95.0	4.0	35.0	2.3	2.5	47.6
BC161	Common Pinto	45	27.6	36.9	43.0	95.0	5.0	21.7	1.0	3.0	43.6
BC133	Medalist	38	27.4	19.6	42.0	97.0	3.3	45.0	4.0	3.7	38.7
BC160	Ul-537	44	27.3	40.6	36.0	95.0	5.0	20.0	1.0	2.5	48.1
BC174	US-1140	50	27.3	38.4	36.0	96.0	5.0	21.7	1.0	2.5	47.5
BC204	NE2-09-3	59	27.2	43.1	41.0	97.0	3.0	38.3	2.0	2.7	40.7
BC070	Sierra	20	27.0	35.3	43.0	101.0	4.0	41.7	1.7	3.8	31.5
BC022	Shiny Crow	5	26.9	21.7	43.0	95.0	5.0	31.7	1.0	2.5	43.4
BC007	BelNeb-RR-1	1	26.9	38.8	38.0	95.0	5.0	18.3	1.0	2.6	46.7
BC192	Weihing	55	26.8	44.2	41.0	97.0	3.7	38.3	2.7	3.0	38.1
BC291	SEA 10	81	26.8	35.1	40.0	97.0	5.0	23.3	1.0	2.6	42.6
BC357	Gemini	92	26.7	35.8	35.0	96.0	4.7	31.7	1.3	2.7	41.3
BC075	Raven	21	26.6	18.8	45.0	95.0	1.3	61.7	6.0	2.8	42.1
BC242	NW-63	70	26.5	33.4	43.0	105.0	5.0	25.0	1.0	3.7	34.0
BC228	Nodak	64	26.5	37.0	36.0	95.0	5.0	25.0	1.0	2.8	44.2
BC041	Aifi Wuriti	13	26.5	24.4	43.0	95.0	2.0	48.3	3.3	2.7	43.5
BC099	S08418, ROSETTA	54	26.5	38.8	43.0	95.0	2.3	51.7	3.7	2.4	47.6
BC145	Midnight	43	26.2	20.3	48.0	97.0	1.7	45.0	4.3	3.1	37.3
BC170	UI-239	49	26.1	33.7	42.0	97.0	5.0	21.7	1.0	2.8	39.5
BC085	Jaguar	24	25.9	19.0	43.0	95.0	1.0	55.0	4.7	2.5	44.7
BC375	Yolano	94	25.8	32.7	40.0	95.0	4.7	31.7	1.0	2.4	44.7
BC278	Viva	74	25.5	32.0	45.0	112.0	5.0	25.0	1.0	5.9	20.1
BC137	Beryl R	40	25.3	32.2	38.0	98.0	4.7	28.3	1.0	2.8	44.0
BC068	Mayflower	19	25.2	21.7	43.0	95.0	1.0	63.3	5.7	2.8	41.2
BC110	Topaz	32	25.1	38.0	36.0	95.0	4.3	33.3	2.0	2.4	45.5
108959	SER16 (CIAT)	6	24.9	26.6	41.0	95.0	3.7	38.3	2.7	2.4	45.9
BC267	Victor	73	24.8	36.4	42.0	101.0	4.7	25.0	1.0	4.2	30.4
BC239	USPT-CBB-5	69	24.4	34.1	36.0	95.0	4.7	25.0	1.3	2.2	47.0
BC195	ABCP-8	57	24.3	33.4	0.0	103.0	4.7	28.3	1.0	2.9	37.8
BC164	Kimberly	47	24.1	36.0	43.0	95.0	4.7	30.0	1.7	2.1	45.2
BC176	Ul-59	51	24.1	39.1	44.0	95.0	5.0	23.3	1.0	2.6	44.3
BC053	F04-2801-4-1-2	15	23.9	23.5	42.0	95.0	1.0	48.3	4.3	2.4	45.5
BC038	CENTA Pupil	12	23.9	24.1	43.0	95.0	1.7	43.3	3.7	2.1	47.6
BC056	Seafarer	16	23.9	20.4	41.0	98.0	2.3	45.0	3.3	2.9	39.2
BC134	Navigator	39	23.7	21.4	42.0	95.0	1.0	55.0	5.0	2.6	40.5

EXPERIMENT 2116 NON-IRRIGATED DROUGHT YIELD TRIAL					PLANTED: 6/12/12						
NAME	PEDIGREE	ENTRY	YIELD CWT IACRE	$\begin{gathered} 100 \text { SEED } \\ \text { WT. (g) } \end{gathered}$	DAYS TO FLOWER	DAYS TO MATURITY	$\begin{gathered} \text { LODGING } \\ (1-5) \\ \hline \end{gathered}$	HEIGHT (cm)	DES. SCORE	BIOMASS	HARVEST INDEX
BC111	Buckskin	33	23.6	40.7	38.0	95.0	5.0	18.3	1.0	2.6	43.4
BC127	Schooner	36	23.3	20.4	38.0	101.0	4.3	33.3	1.3	3.0	37.3
BC329	CDC Crocus	91	23.2	46.2	35.0	95.0	5.0	25.0	1.0	2.3	45.5
BC194	Coyne	56	23.1	42.0	43.0	96.0	4.0	28.3	2.0	2.9	37.7
BC016	Bill Z	2	22.8	37.4	40.0	95.0	5.0	21.7	1.0	2.4	43.2
BC272	Indeterminate Jamaica Red	72	22.1	44.0	45.0	95.0	4.0	33.3	2.7	2.5	42.5
BC109	Poncho	31	21.3	40.0	42.0	95.0	5.0	18.3	1.0	2.0	39.9
BC224	TARS-VCI-4B	63	21.1	24.3	0.0	108.0	5.0	26.7	1.0	3.7	25.8
BC033	PR 0443-151	10	20.8	19.9	48.0	97.0	2.7	55.0	3.0	3.2	29.6
BC037	IBC 301-204	11	20.5	25.5	43.0	95.0	3.3	41.7	2.7	2.0	45.9
BC178	UI-114	52	20.5	36.8	44.0	95.0	5.0	18.3	1.0	2.0	39.3
BC031	Verano	9	19.6	23.5	45.0	98.0	2.3	48.3	3.3	1.8	40.8
BC179	Ul-425	53	19.2	42.3	40.0	103.0	5.0	23.3	1.0	3.1	29.8
BC279	Roza	75	18.7	41.6	49.0	102.0	5.0	28.3	1.0	3.8	23.3
111207	SER48 (CIAT)	48	18.5	34.9	39.0	95.0	2.0	41.7	3.3	2.2	38.9
BC281	Gloria	77	14.2	36.2	45.0	98.0	5.0	26.7	1.0	2.0	37.5
MEAN (96)			27.3	33.2	41.1	97.2	3.6	37.9	2.5	3.0	41.3
LSD (0.05)			4.0	1.9	2.7	3.9	0.9	8.7	0.9	0.7	4.9
CV (\%)			10.9	4.2	3.9	3.0	17.5	16.9	28.1	17.2	8.7

EXPERIMENT 2917 ORGANIC YIELD TRIAL-FINDLAY				PLANTED: 6/12/12		
NAME	PEDIGREE	ENTRY	YIELD CWT	100 SEED	DAYS TO	DAYS TO
			IACRE	WT. (g)	FLOWER	MATURITY
N11226	N05311*/B05044	6	24.9	17.7	49.0	92.0
B11302	N05311//B05055/B05053	34	23.1	21.9	47.0	90.0
N11256	N07009/MEDALIST	13	21.7	18.3	48.0	89.0
N11228	N05311//N07009/N05324	7	20.3	16.7	49.0	89.0
107116	T-39/Midnight, SHANIA	36	20.3	18.6	48.0	91.0
N11258	N07009/MEDALIST	2	19.2	18.3	49.0	89.0
B11375	B07104/B04391	32	18.8	21.5	48.0	88.0
B11361	B04644/B05066	33	18.6	17.3	47.0	85.0
N11257	N07009/MEDALIST	14	18.2	17.9	50.0	91.0
B09197	B05055/B04588	23	17.8	18.6	48.0	87.0
N11283	MEDALIST/N08003	1	17.6	19.4	48.0	89.0
B10244	B04610/N05346	20	17.5	22.3	48.0	95.0
B04554	B00103*/X00822, ZORRO	35	16.8	18.6	48.0	85.0
N09020	N05319/B04316	10	16.6	19.6	48.0	86.0
N11284	MEDALIST/N08003	12	16.4	19.8	48.0	86.0
B09175	N05311/B05055	19	16.1	23.6	48.0	85.0
N11225	N05311*/B05044	5	16.1	18.9	49.0	90.0
B11588	I82054/B07554	25	15.8	21.7	48.0	88.0
B11334	N07009//B04349/B05044	31	15.8	16.7	48.0	86.0
N11298	MEDALIST//B05054/B04588	3	15.8	17.4	49.0	86.0
B11519	I82054/B07554	27	15.3	19.8	55.0	94.0
N11216	N04158/B04265	4	14.8	21.3	48.0	90.0
N11292	N08006/MEDALIST	15	14.0	17.8	50.0	90.0
192002	C-20*3//GTS-0801/Seafarer, VISTA	16	14.0	18.9	48.0	87.0
N11232	N05311//BMD12/B04587	9	13.7	16.6	48.0	88.0
B09204	B05054/B04588	22	12.9	21.2	47.0	86.0
N09034	B05055/B05070	11	12.9	21.2	48.0	87.0
B09199	B05055/B04587	21	12.2	19.9	48.0	88.0
N11202	N05324//N04109/N04158	8	11.7	24.4	48.0	89.0
108958	Mayflower/Avanti, MEDALIST	17	11.0	18.3	47.0	87.0
B10243	B04610/N05346	28	10.3	16.2	51.0	91.0
B11363	B04644/B07554	30	10.1	18.8	48.0	87.0
107112	R99 NO NOD	18	8.2	17.9	48.0	91.0
B11343	B07554//ZORRO/B05044	29	7.9	19.7	48.0	89.0
B11611	I82054/B07554	24	4.7	20.9	51.0	90.0
B11552	I82054/B07554	26	4.2	21.5	56.0	95.0
MEAN (36)			15.1	19.4	48.5	88.5
LSD (0.05)			4.3	2.0	1.4	3.6
CV (\%)			20.8	6.2	1.7	2.4

EXPERIMENT 2918 ORGANIC YIELD TRIAL-SATTELBERG							PLANTED: 6/15/12			
NAME	PEDIGREE	ENTRY	YIELD CWT IACRE	$\begin{gathered} 100 \text { SEED } \\ \text { WT. (g) } \end{gathered}$	DAYS TO FLOWER	DAYS TO MATURITY	$\begin{gathered} \text { LODGING } \\ (1-5) \end{gathered}$	$\begin{aligned} & \text { HEIGHT } \\ & \text { (cm) } \end{aligned}$	DES. SCORE	$\begin{aligned} & \text { CBB } \\ & (1-5) \end{aligned}$
B11361	B04644/B05066	33	18.1	19.0	45.0	88.0	2.0	52.5	5.5	1.0
B11302	N05311//B05055/B05053	34	17.1	20.7	49.0	90.0	1.0	60.0	5.5	0.5
B09175	N05311/B05055	19	16.7	22.9	50.0	91.0	2.0	52.5	3.0	0.0
N11284	MEDALIST/N08003	12	16.3	18.9	46.0	87.0	2.0	55.0	4.0	2.0
B11375	B07104/B04391	32	16.0	19.6	45.0	86.0	1.5	50.0	5.0	3.0
N11283	MEDALIST/N08003	1	16.0	18.8	49.0	88.0	2.0	60.0	4.5	3.5
B09197	B05055/B04588	23	15.8	19.4	45.0	90.0	1.5	47.5	4.0	0.0
192002	C-20*3//GTS-0801/Seafarer, VISTA	16	14.8	19.4	48.0	86.0	2.5	55.0	4.5	1.5
B09199	B05055/B04587	21	14.8	22.1	45.0	90.0	3.0	37.5	2.0	2.0
B11334	N07009//B04349/B05044	31	14.8	17.6	46.0	87.0	1.0	50.0	5.0	1.0
B09204	B05054/B04588	22	14.7	20.6	49.0	89.0	2.0	37.5	3.5	0.0
N09034	B05055/B05070	11	14.7	20.1	45.0	86.0	1.5	47.5	5.0	0.0
N11228	N05311//N07009/N05324	7	14.6	15.5	48.0	88.0	2.5	55.0	3.5	2.5
N11232	N05311//BMD12/B04587	9	14.4	17.3	48.0	90.0	1.0	55.0	4.5	3.0
N11258	N07009/MEDALIST	2	14.2	18.0	49.0	91.0	1.5	60.0	5.0	0.0
N11202	N05324//N04109/N04158	8	14.2	23.5	46.0	90.0	1.5	55.0	4.5	0.5
N11216	N04158/B04265	4	14.2	21.4	47.0	97.0	2.5	60.0	2.5	1.0
108958	Mayflower/Avanti, MEDALIST	17	14.1	19.6	47.0	90.0	2.5	65.0	4.0	2.5
N09020	N05319/B04316	10	13.7	18.7	46.0	89.0	1.0	70.0	5.5	0.0
B10244	B04610/N05346	20	13.5	20.1	48.0	92.0	2.0	55.0	3.5	2.5
107116	T-39/Midnight, SHANIA	36	12.9	18.6	49.0	94.0	1.0	60.0	3.5	5.0
N11256	N07009/MEDALIST	13	12.9	17.8	49.0	89.0	2.0	55.0	3.5	1.5
B11588	I82054/B07554	25	12.5	21.2	49.0	91.0	2.0	50.0	4.0	4.0
B11343	B07554//ZORRO/B05044	29	12.3	17.6	49.0	86.0	1.5	47.5	4.5	2.5
N11257	N07009/MEDALIST	14	12.2	18.2	50.0	97.0	2.0	60.0	3.0	2.0
B11363	B04644/B07554	30	11.9	19.8	47.0	90.0	1.5	52.5	4.5	2.0
N11298	MEDALIST//B05054/B04588	3	11.6	17.6	50.0	88.0	1.5	50.0	5.0	3.0
B04554	B00103*/X00822, ZORRO	35	11.3	18.5	50.0	88.0	1.0	52.5	5.5	3.0
N11225	N05311*/B05044	5	11.2	19.9	49.0	93.0	2.0	57.5	4.0	1.5
B11519	I82054/B07554	27	10.9	18.4	55.0	97.0	2.0	55.0	2.0	3.0
N11226	N05311*/B05044	6	10.9	18.7	49.0	94.0	2.0	62.5	4.0	3.0
N11292	N08006/MEDALIST	15	10.3	16.2	48.0	90.0	1.5	50.0	4.0	4.0
B11611	I82054/B07554	24	9.8	20.9	52.0	93.0	2.0	65.0	2.5	3.5
107112	R99 NO NOD	18	9.2	19.4	45.0	92.0	2.0	60.0	3.5	2.0
B10243	B04610/N05346	28	9.0	17.2	49.0	93.0	1.0	50.0	3.0	3.5
B11552	I82054/B07554	26	6.1	22.7	56.0	99.0	2.5	60.0	1.5	1.0
MEAN (36)			13.3	19.3	48.0	90.3	1.8	54.7	4.0	2.0
LSD (0.05)			2.8	1.1	1.9	4.4	1.1	13.3	1.8	2.0
CV (\%)			18.2	4.7	2.3	2.9	36.6	14.4	26.6	58.8

EXPERIMENT 2219 STANDARD KIDNEY YIELD TRIAL		PLANTED: 6/13/12								
NAME	PEDIGREE	ENTRY	YIELD CWT 100 SEED		DAYS	DAYS TOL	ODGING(1-5)	HEIGHT (cm)	DES. SCORE	$\begin{aligned} & \text { CBB } \\ & (1-5) \end{aligned}$
			IACRE	WT. (g)	FLOWER	VATURIT)				
K11914	K04604/USWK-CBB-17	2	40.6	60.1	39.0	94.0	1.0	45.7	5.0	3.3
K11916	K04607/USWK-CBB-17	8	38.2	55.2	38.0	94.0	1.0	44.7	5.0	1.0
K11320	K08222/CORNELL603	49	37.7	44.5	40.0	93.0	1.0	44.7	5.0	1.7
K11909	K06940/USWK-CBB-17	21	37.6	45.8	39.0	94.0	1.0	47.0	5.7	1.0
K11919	K04607/USWK-CBB-17	35	36.3	52.8	38.0	94.0	1.0	44.7	5.3	1.0
K08961	K04604/USDK-CBB-15, SNOWDON	3	35.9	56.8	40.0	93.0	1.0	45.0	4.3	4.0
K11917	K04607/USWK-CBB-17	16	35.7	56.9	39.0	93.0	1.0	44.0	5.0	1.7
K08222	Red Hawk/USDK-CBB-15	30	35.5	54.0	42.0	96.0	1.7	48.3	5.3	1.0
K11913	K04604/USWK-CBB-17	24	35.1	56.7	40.0	93.0	1.0	46.0	4.3	4.0
K08228	K03271/USDK-CBB-15	20	34.8	51.0	41.0	98.0	1.5	48.6	3.0	3.0
K11939	K07929//K06014/K07715	22	33.6	65.4	39.0	92.0	1.0	45.1	4.0	3.3
K11714	K08601/K08233	14	32.5	57.8	43.0	98.0	1.0	48.7	5.0	1.0
K11710	K06012//K06014/K07715	17	31.1	47.8	40.0	95.0	1.3	46.7	3.7	3.3
K11713	K08601/K08233	34	30.3	53.7	44.0	99.0	1.0	49.3	5.0	1.3
K11306	K06621/USDK-CBB-15	32	30.3	52.0	40.0	97.0	1.0	47.7	5.7	1.7
K90101	CHAR/2*MONT, RED HAWK	41	30.2	51.6	40.0	94.0	1.3	47.7	4.0	3.0
K11921	K04604/CHINOOK2000	1	29.9	56.1	39.0	92.0	1.0	45.1	4.0	4.0
K11707	K06621/USDK-CBB-15	51	29.7	52.4	40.0	96.0	1.7	47.3	5.3	1.7
K11915	K04604/USWK-CBB-17	15	29.5	52.9	40.0	93.0	1.0	45.7	4.3	3.3
K11938	K07929//K06014/K07715	40	29.5	62.0	40.0	96.0	1.0	46.1	4.0	4.0
K11918	K04607/USWK-CBB-17	4	29.3	53.0	37.0	93.0	1.0	45.3	5.0	3.7
110105	Montcalm/DRK15, MAJESTY	28	29.1	65.6	40.0	94.0	2.5	47.6	3.0	3.0
K11709	K06012//K06014/K07715	44	29.1	49.2	42.0	97.0	1.3	47.7	4.3	3.0
190013	CELRK	45	28.5	62.2	38.0	92.0	1.0	44.7	3.3	5.0
K74002	MDRK/CN(3)-HBR(NEB\#1), MONTCALM	56	28.1	52.0	40.0	96.0	1.3	47.3	3.0	3.3
K11944	K07926//C06819/X07804	6	28.0	56.6	41.0	93.0	1.0	45.6	4.0	3.3
K11926	X06115/X06114	25	27.9	51.5	41.0	95.0	1.3	47.7	4.3	3.3
K01234	Mutant of Red Hawk, REDCOAT	47	27.1	56.1	40.0	95.0	1.0	47.1	4.0	3.3
111201	Pink Panther//ZAA/Montcalm, CLOUSEAU	10	26.8	52.9	40.0	92.0	1.0	48.1	2.0	5.0
K11937	K07929/K06014/K07715	26	25.9	68.6	38.0	99.0	1.0	48.0	3.7	2.7
K11303	Red Hawk/K06003/CBB-15	11	25.8	47.6	41.0	94.0	1.3	45.0	3.0	3.0
K11908	K06940/USWK-CBB-17	12	25.8	45.4	38.0	91.0	1.0	46.1	4.0	4.3
K11906	K07303/USWK-CBB-17	23	25.7	52.8	41.0	95.0	1.3	47.7	4.0	4.0
K11942	K07926//C06819/X07804	38	25.7	60.4	40.0	92.0	1.0	47.6	4.0	4.0
K94601	CN49242/3*MONT//REDKLOUD,CHINOOK2000	55	25.6	49.2	40.0	97.0	1.0	47.6	2.0	3.3
K11941	K07926//C06819/X07804	5	24.6	59.2	39.0	92.0	1.0	45.6	3.5	4.3
K11301	K06001/ND02-385-14	19	23.8	60.9	40.0	92.0	1.3	47.3	4.0	3.3
K11943	K07926//C06819/X07804	18	23.5	66.4	39.0	93.0	1.0	46.1	3.5	4.0
K11803	K07926//C06819/X07804	7	23.5	61.6	39.0	92.0	1.0	46.1	5.0	4.0
K11701	K05616/K04604//K03240/JALOLISTRAPRETAS	39	23.3	52.5	46.0	100.0	1.0	48.3	2.7	3.0

EXPERIMENT 2219 STANDARD KIDNEY YIELD TRIAL		PLANTED: 6/13/12								
NAME	PEDIGREE	ENTRY	YIELD CWT 100 SEED		DAYS TO FLOWER	TO DAYS TO	$\begin{gathered} \text { LODGING } \\ (1-5) \\ \hline \end{gathered}$	HEIGHT(cm)	DES. SCORE	$\begin{aligned} & \text { CBB } \\ & (1-5) \end{aligned}$
			IACRE	WT. (g)		RUATURIT)				
K11922	K03601/K04607	36	23.2	63.2	39.0	93.0	1.0	44.0	4.0	4.7
K11704	K05616/K05614//REDHAWK/JALO VERMILLO	33	23.1	51.3	43.0	95.0	1.0	48.3	3.7	2.7
K11312	K06012//IO7135/K07303	48	23.1	57.9	40.0	97.0	1.0	47.3	3.7	3.7
K90902	BEA/50B1807//LASSEN, BELUGA	52	22.4	52.4	42.0	99.0	1.0	48.7	3.7	3.3
K11309	K06012/USDK-CBB-15	53	22.2	55.6	42.0	95.0	1.3	47.7	4.0	3.7
K11708	CHINOOK2000/USDK-CBB-15	50	22.0	49.7	41.0	97.0	1.0	46.3	2.0	3.3
K11302	K07303/USWK-CBB-17	31	21.7	56.1	40.0	95.0	1.0	47.7	4.0	3.7
K11912	Red Hawk/X06167	43	21.3	51.8	42.0	97.0	1.0	48.0	4.0	3.7
K11907	K07303/USWK-CBB-17	46	21.1	44.7	40.0	93.0	1.0	45.0	3.3	4.0
K11802	K07926//C06819/X07804	29	20.8	72.0	39.0	93.0	1.3	46.3	4.0	4.0
K11804	K07926//C06819/X07804	27	19.9	72.9	38.0	93.0	1.7	47.0	3.3	4.0
K11712	K06012//K06014/K07715	9	18.9	51.3	40.0	94.0	1.7	47.0	4.3	4.0
K11319	K08222/CORNELL603	42	18.7	47.1	41.0	96.0	1.0	46.6	5.0	2.3
K08907	K03244/I05103	13	18.4	48.3	41.0	94.0	1.0	48.6	4.0	4.3
K11923	K99974/XANA	37	17.1	76.1	39.0	92.0	1.0	45.1	4.0	4.0
K11925	K99974/XANA	54	15.9	76.5	39.0	92.0	1.0	46.1	3.5	3.3
MEAN (56)			27.3	56.0	40.1	94.5	1.1	46.7	4.0	3.2
LSD (0.05)			5.6	4.6	1.7	2.0	0.5	1.9	0.8	0.7
CV (\%)			15.0	6.1	3.1	1.6	29.3	3.0	15.2	16.5

EXPERIMENT 2220 STANDARD CRANBERRY YIELD TRIAL						PLANTED: 6/13/12				
NAME	PEDIGREE	ENTRY	'IELD CW-100 SEED		DAYS	S TO	ODGING	HEIGHT	DES.	CBB
			IACRE	WT. (g)		TURITY	(1-5)	(cm)	SCORE	(1-5)
C11260	C07401//CBB-20/C05617	4	39.0	55.2	39.0	94.0	2.0	45.3	5.0	1.7
C11320	C05617/CBB-20	27	38.0	53.0	39.0	93.0	1.3	44.0	5.3	2.0
C11273	C07403//CBB-20/C06812	17	36.3	53.6	39.0	95.0	2.0	48.3	6.0	1.3
C11266	C07401//CBB-20/C05653	19	35.2	55.3	39.0	94.0	1.3	48.3	6.3	1.3
C11258	C07401//CBB-20/C05617	28	35.0	56.5	39.0	93.0	1.0	44.0	5.0	3.0
C11264	C07401//CBB-20/C05653	29	34.8	54.5	39.0	95.0	1.7	47.3	5.0	2.7
C11383	CBB-20/C07414	51	34.8	56.0	38.0	94.0	1.3	47.0	4.7	3.3
C11259	C07401//CBB-20/C05617	23	34.3	55.6	39.0	93.0	2.0	45.3	5.3	1.7
C11222	C05631/C07411	3	32.9	60.4	39.0	95.0	1.0	46.7	4.0	3.3
C11314	CAPRI/CBB-20	2	32.7	56.3	38.0	94.0	1.7	47.0	5.0	2.0
C11261	C07401//CBB-20/C05617	22	32.0	53.2	38.0	93.0	1.7	44.3	5.0	2.7
C11388	C08712/C07403	54	32.0	50.8	39.0	94.0	1.3	48.0	4.0	3.0
C11274	C07403//CBB-20/C06812	14	30.8	56.7	39.0	94.0	1.0	46.3	4.3	2.0
C11305	C07413//CBB-20/C05617	16	30.8	52.9	39.0	94.0	1.0	47.7	5.7	3.3
C11317	CAPRI/CBB-20	18	30.6	55.0	38.0	94.0	1.7	46.0	5.0	2.3
C11276	C07403//CBB-20/C06812	9	30.0	58.2	40.0	94.0	1.7	48.3	4.0	3.0
C11368	Capri/C08716	52	29.8	57.2	40.0	93.0	2.0	48.3	3.3	3.7
C11369	C99833/C08716	50	29.3	54.4	39.0	92.0	1.3	48.7	4.0	3.7
C11321	C05617/CBB-20	34	29.0	53.4	39.0	92.0	1.7	44.7	4.7	3.7
C11319	C05617/CBB-20	38	29.0	54.9	39.0	93.0	1.0	43.7	4.7	4.0
C11212	C05617/C07411	15	28.9	54.8	38.0	94.0	1.0	48.0	4.0	3.3
C11375	C08706/C08712	63	28.7	56.1	39.0	93.0	1.0	46.7	5.0	4.0
C11263	C07401//CBB-20/C05617	44	28.7	53.9	39.0	93.0	1.3	44.0	4.7	2.7
C11269	C07401//CBB-20/C05653	20	28.5	56.2	39.0	93.0	1.7	45.0	4.3	3.3
C11284	C07403//BD1002/C07403	24	28.2	62.2	38.0	92.0	1.3	46.3	3.7	4.0
C11275	C07403//CBB-20/C06812	26	28.2	53.8	39.0	94.0	1.7	46.3	4.0	3.0
192014	ETNA	21	28.0	60.1	39.0	92.0	1.0	44.3	3.3	5.0
C11223	CAPRI/X06150	6	27.9	52.7	39.0	95.0	1.0	45.0	4.7	2.7
C11228	C05653/CBB-20	30	27.4	57.2	39.0	92.0	1.0	46.3	4.0	4.7
C11393	C07403/C08717	60	27.1	59.6	39.0	92.0	1.3	45.7	3.3	3.0
C11204	C05631//C05603/CBB-20	10	27.1	57.1	39.0	93.0	1.0	46.3	4.3	4.0
C11373	C08706/C08712	55	27.0	56.1	39.0	93.0	1.0	46.7	4.7	3.3
C11392	C07403/C08717	57	26.4	60.7	39.0	92.0	1.7	45.7	3.3	4.0
C11216	C06820/C05617	40	26.0	53.3	39.0	93.0	1.0	45.7	4.0	3.7
C11347	C08706/CBB-20	53	26.0	57.7	39.0	93.0	1.0	44.0	3.7	4.0
C11219	BELLAGIO/X07801	12	25.9	58.4	39.0	92.0	1.0	46.3	4.0	4.3
C11247	BELLAGIO//X07801/C07403	37	25.9	49.1	40.0	91.0	1.0	46.7	4.3	3.7
C11206	C05631//C05603/CBB-20	35	25.9	54.5	39.0	93.0	1.3	47.7	4.7	4.0
C11221	C06818/C07411	1	25.7	49.4	40.0	93.0	1.0	48.3	4.3	3.7
C11374	C08706/C08712	59	25.7	60.2	38.0	92.0	1.0	45.0	4.7	4.0

EXPERIMENT 2220 STANDARD CRANBERRY YIELD TRIAL						PLANTED: 6/13/12				
NAME	PEDIGREE	ENTRY	'IELD CW-100 SEED		DAYS TO	DAYS TO LODGING		$\begin{aligned} & \text { HEIGHT } \\ & \text { (cm) } \end{aligned}$	DES. SCORE	$\begin{aligned} & \text { CBB } \\ & (1-5) \end{aligned}$
			IACRE	WT. (g)	FLOWER	R VATURITY	(1-5)			
	C07414/C08706	58	25.6	55.3	38.0	92.0	1.0	44.0	4.3	4.3
C11309	C07413//BD1002/BELLAGIO	42	25.6	47.7	39.0	92.0	1.0	45.7	4.3	4.0
C11252	BELLAGIO//C05647/X07804	39	25.4	60.5	40.0	93.0	1.3	47.3	3.7	4.0
C11203	C05631//C05603/CBB-20	45	25.1	55.5	39.0	92.0	1.0	46.7	3.7	4.3
C11225	C05603/CBB-20	31	25.0	46.5	41.0	93.0	1.3	45.7	3.0	4.0
C11257	C07401//CBB-20/C05617	7	24.9	57.5	39.0	93.0	1.3	44.0	4.0	3.3
C11286	C07403//C05647/X07801	47	24.8	59.3	39.0	93.0	1.0	44.7	3.7	3.3
C11268	C07401//CBB-20/C05653	13	24.8	53.0	39.0	93.0	2.0	44.7	4.0	3.7
C11346	C08706/CBB-20	56	24.7	60.4	38.0	92.0	1.0	42.3	4.0	4.3
C11339	C08706/C07403	62	24.5	59.0	40.0	92.0	1.0	45.7	3.7	4.0
C99833	CARDINAL/K94803,CAPRI	41	24.3	59.6	40.0	94.0	1.0	47.7	3.7	3.3
C11240	BELLAGIO//BD1002/BELLAGIO	11	24.0	57.6	38.0	92.0	1.0	47.0	4.7	4.0
C11231	C05631//C05647/X07804	43	23.0	54.1	40.0	92.0	1.0	44.0	3.3	5.0
C11241	BELLAGIO//BD1002/BELLAGIO	8	23.0	57.0	39.0	91.0	1.0	48.0	4.3	4.3
C11255	C07401//CBB-20/C05617	46	23.0	55.3	40.0	92.0	1.0	45.3	4.0	4.3
C11312	C07413//BD1002/BELLAGIO	32	22.9	52.0	39.0	92.0	1.0	46.0	4.3	4.0
C11387	C08717/C07414	61	22.4	51.3	39.0	91.0	1.3	46.7	3.7	4.7
C11310	C07413//BD1002/BELLAGIO	25	22.2	49.6	39.0	92.0	1.0	44.3	4.0	4.3
C11389	C07403/C08717	64	22.1	48.1	39.0	93.0	1.0	45.3	4.3	3.3
C11233	C05631//C05647/X07804	33	22.0	55.3	39.0	91.0	1.0	43.0	4.0	5.0
C11201	C03157//C05603/CBB-20	5	21.4	57.1	39.0	92.0	1.0	47.7	4.0	4.3
C11202	C05631//C05603/CBB-20	36	21.3	59.0	41.0	93.0	1.0	43.7	3.3	3.7
C11226	C03157/CAPRI	48	18.3	58.6	39.0	92.0	1.0	43.0	3.7	4.0
I11259	UCD 0801	49	9.6	51.2	48.0	103.0	1.0	50.0	1.0	3.7
MEAN (64)			27.3	54.7	39.2	93.0	1.2	46.0	4.2	3.5
LSD (0.05)			4.3	9.3	1.1	1.2	0.3	1.4	0.5	0.5
CV (\%)			11.5	12.6	2.0	0.9	18.3	2.3	9.5	11.0

EXPERIMENT 2221 PRELIMINARY KIDNEY YIELD TRIAL							PLANTED: 6/13/12			
NAME	PEDIGREE	ENTRY	YIELD CWT IACRE	$\begin{gathered} 100 \text { SEED } \\ \text { WT. (g) } \\ \hline \end{gathered}$	DAYS TO FLOWER	DAYS TO MATURITY	$\begin{gathered} \text { LODGING } \\ (1-5) \end{gathered}$	$\begin{aligned} & \text { HEIGHT } \\ & (\mathrm{cm}) \\ & \hline \end{aligned}$	DES. SCORE	$\begin{aligned} & \text { CBB } \\ & (1-5) \end{aligned}$
K08961	K04604/USDK-CBB-15, SNOWDON	55	36.3	66.1	38.0	92.0	2.0	48.0	6.0	4.0
K12803	K07921//K08971/K08233	30	36.1	54.1	38.0	93.0	1.0	45.0	5.0	1.5
K12810	K08901//K08929/K08222	37	34.8	57.1	40.0	95.0	1.0	48.0	5.7	2.5
K12203	K08233//K08220/K06012	3	33.2	48.1	42.0	96.0	2.0	48.3	4.7	2.0
K12801	USWK-CBB-17//K08929/K08222	28	32.9	43.6	40.0	93.0	1.0	45.7	5.3	2.0
K12805	K08222//K08222/K08974	32	31.8	56.6	41.0	98.0	1.3	48.0	4.7	1.5
K12222	K08222/K07713	22	31.2	57.7	40.0	94.0	2.3	47.7	4.0	3.5
K12201	K08222//K08220/K06012	1	31.1	56.3	42.0	98.0	2.3	47.7	4.0	2.0
K12602	K06619/K08222	27	31.0	49.1	43.0	98.0	1.7	49.0	4.3	2.5
K12219	K06001/Red Hawk	19	30.9	54.0	40.0	93.0	1.7	46.7	4.0	3.5
K12811	K08901//K08929/K08222	38	30.9	54.9	38.0	93.0	1.0	46.0	5.7	1.5
K12205	K08233//K08220/K06012	5	30.5	57.2	41.0	96.0	1.7	48.0	4.7	2.0
K12812	K08901//K08929/K08222	39	30.4	54.9	38.0	92.0	1.0	45.7	5.0	4.5
K12225	K08222/CORNELL 603	25	30.4	45.1	40.0	92.0	1.0	45.7	6.0	1.0
K12206	K08233//K08220/K08233	6	30.3	49.5	40.0	94.0	2.3	45.7	4.0	2.0
K12807	K08233//K08220/K08974	34	30.3	55.9	39.0	98.0	1.3	48.0	5.3	2.5
K12601	Red Hawk//K08601/K08233	26	30.3	57.4	41.0	96.0	2.7	47.3	4.0	3.0
K12802	USWK-CBB-17//K08929/K08222	29	30.3	47.7	39.0	94.0	1.0	46.0	6.0	2.5
K90101	CHAR/2*MONT, RED HAWK	52	30.1	54.0	40.0	93.0	1.7	47.3	4.0	4.5
K12813	K08901//K08929/K08222	40	29.7	61.5	39.0	92.0	1.0	44.7	5.7	4.5
K12209	K08233//K08222/K08601	9	28.8	51.4	42.0	97.0	2.7	47.3	3.7	3.0
K12207	K08233//K08220/K08974	7	28.5	59.0	39.0	96.0	2.0	46.7	4.3	2.0
K12815	USWK-CBB-17//K06619/K08233	42	27.9	41.4	40.0	99.0	1.3	48.7	4.3	2.0
K12806	K08222//K08971/K08233	33	27.8	46.3	43.0	99.0	1.3	49.0	4.0	3.0
K12820	K07926//C06819/X07804	47	27.4	71.1	39.0	92.0	1.0	45.3	4.7	4.5
K74002	MDRK/CN(3)-HBR(NEB\#1), MONTCALM	53	27.4	57.8	42.0	100.0	3.0	48.0	3.3	4.0
K12220	Red Hawk/K06001	20	27.3	57.6	40.0	95.0	2.0	47.0	3.7	4.5
K12822	K07926//C06819/X07804	49	27.2	59.3	40.0	92.0	2.3	45.7	4.7	4.5
K12814	K08901//K08929/K08222	41	27.0	59.1	38.0	93.0	1.0	46.7	5.3	3.5
K12212	Red Hawk//K07713/K08222	12	26.9	47.2	45.0	92.0	2.0	45.7	3.3	4.5
K12218	Red Hawk/USWK-CBB-17	18	26.5	52.8	41.0	94.0	1.0	47.7	4.0	5.0
K12214	Red Hawk//K08220/K08233	14	25.9	55.7	40.0	93.0	1.7	45.7	4.0	4.0
K12217	Red Hawk/K08233	17	25.9	50.7	42.0	96.0	1.3	47.0	4.0	3.5
K12221	Red Hawk/K06001	21	25.7	56.5	41.0	96.0	2.7	47.7	3.3	4.5
111201	Pink Panther//ZAA/Montcalm, CLOUSEAU	56	25.7	61.9	40.0	93.0	1.7	46.7	3.0	5.0
K12204	K08233//K08220/K06012	4	25.6	57.4	39.0	96.0	2.3	47.7	4.3	2.0
K12808	K08601//K08929/K08222	35	25.4	52.9	41.0	97.0	1.3	48.0	4.3	4.0
K12824	K07926//K07303/I07136	51	25.2	78.3	39.0	92.0	1.0	44.0	4.3	5.0
K12210	K08233//K08222/K08601	10	25.1	47.9	42.0	96.0	2.3	46.7	3.7	4.0
K12804	K08222/IK08222/K08974	31	24.8	56.2	43.0	99.0	1.7	49.0	4.3	1.5
K12215	Red Hawk//K08222/K08601	15	24.7	45.8	41.0	94.0	2.0	48.3	3.7	4.5

EXPERIMENT 2221 PRELIMINARY KIDNEY YIELD TRIAL							PLANTED: 6/13/12			
NAME	PEDIGREE	ENTRY	YIELD CWT IACRE	$\begin{gathered} 100 \text { SEED } \\ \text { WT. (g) } \end{gathered}$	DAYS TO FLOWER	DAYS TO MATURITY	$\begin{gathered} \text { LODGING } \\ (1-5) \end{gathered}$	$\begin{aligned} & \text { HEIGHT } \\ & (\mathrm{cm}) \end{aligned}$	$\begin{aligned} & \text { DES. } \\ & \text { SCORE } \end{aligned}$	$\begin{aligned} & \text { CBB } \\ & (1-5) \\ & \hline \end{aligned}$
K12816	USWK-CBB-17//K06619/K08233	43	24.4	40.1	41.0	96.0	1.0	48.0	5.0	1.5
K12819	K08601/USWK-CBB-17	46	24.3	57.5	40.0	98.0	1.3	48.3	4.7	2.0
K12821	K07926//C06819/X07804	48	24.3	61.2	39.0	93.0	1.7	46.7	5.0	4.5
K12224	K08222/K06001	24	23.5	58.4	42.0	98.0	2.3	48.0	4.0	1.5
K12216	Red Hawk/K08222/K08601	16	23.3	47.5	40.0	93.0	1.3	46.3	3.3	5.0
K12202	K08233/K06619/K08233	2	23.3	56.7	40.0	97.0	2.3	46.3	4.0	3.0
K12823	K07926//K07303/107136	50	23.1	77.7	39.0	93.0	1.7	45.3	3.0	5.0
K12809	K08601/K08929/K08222	36	23.0	48.6	43.0	97.0	1.7	48.0	4.3	3.5
K12208	K08233//K08220/K08974	8	22.9	55.3	41.0	96.0	1.3	47.0	4.7	2.0
K12818	USWK-CBB-17//K06619/K08233	45	22.6	45.3	40.0	99.0	1.3	49.3	4.3	2.0
K12211	K08601/K08971/K08233	11	22.0	56.2	42.0	94.0	1.3	47.7	4.0	4.0
K12817	USWK-CBB-17//K06619/K08233	44	21.1	42.8	45.0	100.0	1.3	49.0	4.0	2.0
K90902	BEA/50B1807//LASSEN, BELUGA	54	20.9	55.6	42.0	99.0	1.7	49.0	3.3	4.0
K12213	Red Hawk/K08220/K08233	13	20.4	55.0	41.0	95.0	2.3	47.3	3.3	4.0
K12223	K08222/K07713	23	18.7	47.8	47.0	97.0	2.3	46.7	3.3	4.0
MEAN (56)			27.3	54.5	40.6	95.3	1.7	47.1	4.3	3.2
LSD (0.05)			5.0	4.0	1.6	2.3	0.7	1.5	0.9	0.9
CV (\%)			13.6	5.4	2.9	1.8	29.1	2.4	15.3	16.8

EXPERIMENT 2222 PRELIMINARY MAYACOBA YIELD TRIAL							PLANTED: 6/13/12		
NAME	PEDIGREE	ENTRY	YIELD CWT IACRE	$\begin{gathered} 100 \text { SEED } \\ \text { WT. } \mathrm{g}) \end{gathered}$	DAYS TO FLOWER	DAYS TO MATURITY	$\begin{gathered} \text { LODGING } \\ (1-5) \end{gathered}$	$\begin{aligned} & \text { HEIGHT } \\ & \text { (cm) } \\ & \hline \end{aligned}$	DES. SCORE
X11402	FR-07-AZP-14-03	3	16.1	46.2	41.0	92.0	1.0	44.7	4.3
X11404	FR-07-AZP-14-05	4	16.1	46.8	41.0	92.0	1.0	45.0	4.0
111236	MYASI	5	15.7	35.5	42.0	91.0	2.3	42.0	3.0
X11405	FR-07-AZP-14-06	1	15.5	47.0	41.0	92.0	1.0	44.7	3.7
X11401	FR-07-AZP-14-02	2	15.4	46.2	41.0	92.0	1.0	45.0	4.3
MEAN (5)			15.8	44.3	41.2	91.9	1.3	44.3	3.9
LSD (0.05)			4.8	2.2	1.0	1.1	0.4	1.2	1.2
CV (\%)			19.9	3.2	1.6	0.8	20.4	1.8	20.6

EXPERIMENT 2223 NATIONAL WHITE MOLD YIELD TRIAL						PLANTED: 6/14/12					
NAME	PEDIGREE	ENTRY	YIELD CWT IACRE	$\begin{gathered} 100 \text { SEED } \\ \text { WT. (g) } \end{gathered}$	DAYS TO FLOWER	DAYS TO MATURITY	$\begin{gathered} \text { LODGING } \\ (1-5) \\ \hline \end{gathered}$	$\begin{aligned} & \text { HEIGHT } \\ & (\mathrm{cm}) \end{aligned}$	DES. SCORE	WM SCORE	WM \%
P07863	AN-37/P02630, ELDORADO	1	42.9	40.1	41.0	105.0	2.0	56.0	5.7	2.0	22.2
110125	ND080547	7	42.6	32.2	41.0	103.0	2.3	49.0	4.0	4.7	51.8
108933	37-2, USPT-WM-12	9	42.0	38.5	40.0	100.0	2.3	49.3	5.0	4.0	44.4
B11363	B04644/B07554	26	40.1	22.1	41.0	102.0	1.3	56.0	5.0	3.7	40.7
S11701	S04504/R06420	31	39.9	32.7	40.0	100.0	2.0	51.0	5.3	4.7	51.8
I12321	PS02-028A-3-B2	12	38.6	38.9	39.0	99.0	2.0	48.3	5.0	4.0	44.4
P07793	I02545/P02647	55	38.1	38.1	40.0	103.0	2.0	51.7	4.0	2.7	29.6
G11464	G07309//G07302/BMN13	36	37.9	43.4	39.0	98.0	1.7	50.7	5.3	6.7	74.0
107113	PNE-6-94-75/Kodiak, LAPAZ	57	37.7	35.0	43.0	101.0	1.7	56.0	5.0	4.0	44.4
G08254	G04514/Matterhorn	34	35.9	36.7	40.0	99.0	1.7	51.0	5.0	4.3	48.1
B07103	8615, TL	49	35.1	23.7	42.0	105.0	1.7	55.7	3.7	2.3	25.9
B05001	8690, TL	47	33.3	24.3	45.0	105.0	2.7	53.0	3.3	2.3	25.9
P04205	P99119/G99750, SANTA FE	58	33.3	41.3	40.0	99.0	2.0	48.7	4.3	6.7	74.0
B07105	8563, TW	51	33.3	22.8	46.0	105.0	1.7	56.3	4.3	2.7	29.6
N11232	N05311//BMD12/B04587	19	33.1	19.6	42.0	103.0	1.7	56.7	5.7	2.0	22.2
198402	TACANA	46	33.1	21.9	46.0	104.0	1.7	52.3	3.7	1.7	18.5
I10126	PS02-050-2	64	33.1	33.7	40.0	101.0	1.3	52.3	5.0	3.0	33.3
N11216	N04158/B04265	24	32.9	23.2	45.0	103.0	1.3	56.0	5.0	2.3	25.9
P08161	MATTERHORN/EMP 507	28	32.9	36.3	44.0	101.0	2.7	48.7	3.7	7.0	77.7
G09303	G04207/P05437	33	32.8	31.2	39.0	99.0	1.7	55.0	5.0	5.3	59.2
B11334	N07009//B04349/B05044	16	32.6	19.4	40.0	102.0	1.7	56.0	5.0	4.7	51.8
B11331	VCW54 SELECTION	35	32.0	23.0	43.0	105.0	2.3	50.0	3.3	7.3	81.4
N11298	MEDALIST//B05054/B04588	21	31.6	18.8	45.0	103.0	1.7	58.0	5.3	3.0	33.3
B10244	B04610/N05346	13	31.5	22.6	42.0	101.0	1.7	56.3	5.7	4.0	44.4
B09175	N05311/B05055	25	31.4	24.8	46.0	102.0	1.3	59.0	5.3	2.3	25.9
N11283	MEDALIST/N08003	22	31.3	19.5	46.0	102.0	1.3	61.0	6.0	2.0	22.2
N11226	N05311*/B05044	23	31.0	19.1	46.0	104.0	2.0	57.0	5.0	2.7	29.6
B10213	B04587/IZORRO/DPC-1	14	30.9	20.9	41.0	100.0	1.3	52.0	5.0	3.0	33.3
B07104	8543, TW	50	30.8	22.0	43.0	104.0	1.7	54.7	3.7	3.0	33.3
B11343	B07554//ZORRO/B05044	17	30.1	21.2	41.0	101.0	1.7	50.7	4.7	3.7	40.7
G08160	Matterhorn/E507	30	30.0	35.1	40.0	99.0	2.7	47.3	4.0	5.7	62.9
S08418	S02754/S04503, ROSETTA	2	29.8	32.2	43.0	99.0	1.7	53.3	5.3	3.3	37.0
B11355	JAGUAR/B04644	27	29.3	20.3	43.0	101.0	1.7	55.0	4.7	4.0	44.4
P11522	P04203/P06125	29	29.2	38.1	40.0	99.0	1.7	52.0	5.0	4.0	44.4
B07102	8661, TL	48	28.1	20.8	45.0	105.0	1.7	54.0	3.7	3.3	37.0
B04554	B00103*/X00822, ZORRO	56	27.7	24.0	44.0	103.0	2.0	53.3	4.7	3.7	40.7
C11221	C06818/C07411	37	26.8	60.6	40.0	99.0	1.0	50.0	5.0	1.7	18.5
I12319	VRW 32	10	26.6	26.2	42.0	105.0	2.0	49.0	3.0	2.7	29.6
R98026	R94037/R94161, MERLOT	61	26.5	36.5	43.0	105.0	2.0	54.0	4.0	4.7	51.8
108958	Mayflower/Avanti, MEDALIST	53	26.2	19.1	43.0	105.0	2.3	53.3	3.7	2.3	25.9

EXPERIMENT 2223 NATIONAL WHITE MOLD YIELD TRIAL						PLANTED: 6/14/12					
NAME	PEDIGREE	ENTRY	YIELD CWT IACRE	$\begin{gathered} 100 \text { SEED } \\ \text { WT. (g) } \end{gathered}$	DAYS TO FLOWER	DAYS TO MATURITY	LODGING $(1-5)$	$\begin{aligned} & \text { HEIGHT } \\ & (\mathrm{cm}) \end{aligned}$	$\begin{aligned} & \text { DES. } \\ & \text { SCORE } \end{aligned}$	WM SCORE	$\begin{gathered} \text { WM } \\ \% \end{gathered}$
112301	INDI	54	26.1	20.4	45.0	103.0	1.7	55.0	4.0	3.0	33.3
110124	ND060514	6	25.9	20.8	40.0	100.0	2.0	48.3	3.0	4.3	48.1
N11258	N07009/MEDALIST	20	25.6	18.9	47.0	103.0	1.7	57.7	5.3	2.7	29.6
G93414	MATTERHORN	59	25.2	33.2	40.0	98.0	2.0	48.3	5.0	6.0	66.6
$\underline{11264}$	COOP 03019, MERLIN	52	24.6	20.1	45.0	104.0	1.7	54.0	3.7	2.7	29.6
112320	Z0726-9-74	11	24.5	31.8	40.0	99.0	1.7	45.7	3.0	3.3	37.0
181010	JAPON3/MAGDALENE, BUNSI	3	24.5	21.3	41.0	100.0	2.7	47.0	3.7	6.0	66.6
K11714	K08601/K08233	44	24.4	62.4	41.0	105.0	1.0	53.3	4.3	3.0	33.3
B11301	N05311//B05055/B05053	15	24.0	21.4	44.0	103.0	1.3	56.0	5.3	1.7	18.5
N11228	N05311//N07009/N05324	18	23.8	18.2	44.0	104.0	2.3	54.3	4.3	4.7	51.8
K08961	K04604/USDK-CBB-15, SNOWDON	39	23.5	66.9	39.0	98.0	1.0	48.0	5.0	2.0	22.2
S00809	R94142/X94076, SEDONA	60	23.3	38.6	44.0	101.0	3.3	49.3	3.3	5.3	59.2
K11303	Red Hawk/K06003/CBB-15	42	22.7	58.6	39.0	103.0	1.0	50.7	4.3	2.0	22.2
189011	RB, BERYL	4	22.6	34.2	40.0	99.0	4.3	42.0	3.0	9.0	99.9
K11914	K04604/USWK-CBB-17	41	22.2	65.7	39.0	102.0	1.0	50.7	4.7	2.3	25.9
K11301	K06001/ND02-385-14	45	22.0	68.9	40.0	104.0	1.3	48.7	4.0	2.7	29.6
K90902	BEA/50B1807//LASSEN, BELUGA	40	21.4	58.0	42.0	105.0	1.0	52.7	3.7	3.0	33.3
C11314	CAPRI/CBB-20	38	21.0	56.6	39.0	98.0	1.0	47.3	4.0	4.7	51.8
C99833	CARDINAL/K94803, CAPRI	62	20.3	63.0	40.0	101.0	1.3	48.7	3.7	2.3	25.9
K90101	CHAR/2*MONT, RED HAWK	63	20.2	58.7	40.0	103.0	1.0	49.0	4.0	2.3	25.9
K11712	K06012//K06014/K07715	43	20.1	55.1	40.0	102.0	1.0	49.7	4.7	2.7	29.6
S11610	R06412//S07501/R06422	32	19.6	33.6	42.0	100.0	2.7	48.7	4.0	8.3	92.5
196417	G122 MAGNUSON	5	18.4	39.8	43.0	106.0	1.3	51.3	2.7	3.3	37.0
106217	A195	8	16.1	66.5	51.0	110.0	1.0	54.7	1.0	1.7	18.5
MEAN (64)			29.1	34.3	42.1	102.0	1.8	52.2	4.4	3.7	40.9
LSD (0.05)			14.2	6.1	4.0	1.3	31.0	4.4	13.2	38.0	38.0
CV (\%)			5.6	2.9	2.3	1.8	0.7	3.1	0.8	1.9	21.0

EXPERIMENT 2425 BNF YIELD TRIAL				PLANTED: 6/19/12								
NAME	PEDIGREE	ENTRY	YIELD CWT IACRE	$\begin{gathered} 100 \text { SEED } \\ \text { WT. (g) } \end{gathered}$	DAYS TO FLOWER	DAYS TO MATURITY	$\begin{gathered} \text { LODGING } \\ (1-5) \end{gathered}$	HEIGHT (cm)	DES. SCORE	BIOMASS	HARVEST INDEX	VIGOR (1-5)
B11536	I82054/B07554	35	26.5	24.5	50.0	98.0	2.5	60.0	4.0	3.0	40.1	4.0
B11582	182054/B07554	80	25.8	20.7	52.0	99.0	1.0	60.0	5.5	3.3	37.5	4.0
107112	R99 NO NOD	125	24.9	21.6	46.0	100.0	2.5	60.0	3.5	3.8	34.3	3.0
B11545	182054/B07554	43	24.8	22.3	48.0	98.0	1.0	80.0	5.0	3.1	33.8	4.0
B11620	182054/B07554	116	24.7	24.9	48.0	99.0	3.5	60.0	2.5	3.6	35.6	4.0
B11603	182054/B07554	100	23.9	26.5	50.0	107.0	2.0	70.0	2.0	3.4	28.8	3.0
B11519	182054/B07554	18	23.7	22.3	55.0	99.0	2.0	55.0	3.5	2.6	39.3	3.0
B11544	182054/B07554	42	23.2	25.1	53.0	99.0	2.0	60.0	4.0	2.8	37.2	3.0
B11602	182054/B07554	99	23.2	25.8	56.0	100.0	3.0	65.0	3.5	3.3	35.6	3.0
B11609	182054/B07554	106	23.0	22.6	49.0	101.0	2.5	70.0	3.0	4.7	32.8	4.0
B11571	182054/B07554	69	23.0	23.2	55.0	103.0	1.0	80.0	5.0	3.0	30.5	4.0
B11565	182054/B07554	63	22.9	23.9	49.0	100.0	2.0	75.0	4.0	2.8	35.9	3.0
B11549	182054/B07554	47	22.4	23.2	49.0	99.0	2.0	55.0	3.5	3.1	35.2	4.0
B11555	182054/B07554	53	22.2	25.8	49.0	100.0	1.5	85.0	4.5	3.7	33.0	5.0
B11557	182054/B07554	55	22.0	23.6	48.0	99.0	3.0	65.0	2.5	4.4	22.2	4.0
B11610	182054/B07554	107	21.9	29.3	51.0	102.0	2.5	55.0	3.0	3.4	28.3	3.0
B11567	182054/B07554	65	21.8	24.8	57.0	102.0	3.0	50.0	3.5	3.1	35.4	3.0
B11611	182054/B07554	108	21.7	26.4	52.0	101.0	2.0	80.0	3.5	3.5	30.6	3.0
B11594	182054/B07554	92	21.7	25.1	49.0	97.0	3.0	40.0	2.5	2.2	40.1	3.0
B11511	182054/B07554	10	21.6	24.9	53.0	101.0	3.0	70.0	3.0	5.4	21.0	3.0
111271	10IS-2423	129	21.6	25.5	46.0	96.0	2.0	55.0	3.5	2.3	43.5	3.0
B11590	182054/B07554	88	21.5	21.1	51.0	98.0	1.0	65.0	5.0	2.7	33.8	4.0
B11563	182054/B07554	61	21.3	25.9	49.0	102.0	1.5	75.0	3.5	5.1	24.2	4.0
B11570	182054/B07554	68	21.3	23.9	50.0	97.0	1.0	65.0	6.0	2.8	35.7	4.0
B11531	182054/B07554	30	21.2	24.8	49.0	106.0	3.5	80.0	3.5	4.4	26.1	3.0
B11556	182054/B07554	54	21.1	21.8	45.0	99.0	1.0	55.0	4.5	2.4	37.1	3.0
B11546	182054/B07554	44	20.9	23.6	56.0	109.0	3.0	70.0	1.5	4.9	21.0	4.0
B11527	I82054/B07554	26	20.9	28.9	50.0	53.0	3.0	60.0	2.5	2.8	35.6	4.0
110149	VERANO	127	20.8	24.3	45.0	104.0	2.0	55.0	2.5	3.2	31.8	3.0
B11543	182054/B07554	41	20.8	22.6	49.0	98.0	1.5	80.0	4.5	3.7	29.1	4.0
B11616	182054/B07554	113	20.7	22.0	55.0	100.0	1.0	80.0	5.0	2.8	40.3	4.0
108958	MEDALIST	130	20.6	20.8	47.0	98.0	1.5	65.0	5.0	3.7	29.5	3.0
B11595	182054/B07554	93	20.5	26.6	50.0	100.0	3.0	65.0	2.5	4.0	24.0	4.0
B11530	182054/B07554	29	20.5	22.2	50.0	102.0	2.0	80.0	3.5	3.0	32.1	4.0
B11593	182054/B07554	91	20.4	22.5	49.0	102.0	2.5	65.0	4.0	4.1	21.2	3.0
B11509	182054/B07554	8	20.4	22.4	50.0	98.0	1.0	70.0	5.5	3.0	30.8	3.0
B11581	182054/B07554	79	20.4	25.2	51.0	108.0	3.0	55.0	2.5	3.2	26.3	3.0
B11574	182054/B07554	72	20.3	26.2	57.0	109.0	4.0	55.0	1.0	4.2	18.9	4.0
B11523	182054/B07554	22	20.2	28.8	47.0	100.0	2.5	45.0	3.5	2.5	36.2	3.0
B11568	182054/B07554	66	20.1	25.9	51.0	110.0	2.0	65.0	2.5	6.7	16.7	4.0
B11539	182054/B07554	37	20.1	24.6	48.0	99.0	2.0	60.0	3.0	4.6	31.6	2.0
B11617	182054/B07554	114	20.0	21.1	46.0	96.0	1.0	60.0	5.5	1.8	48.4	3.0
B11547	182054/B07554	45	20.0	25.0	49.0	96.0	1.5	60.0	3.5	2.0	45.1	3.0
B11592	182054/B07554	90	19.9	22.9	49.0	99.0	1.0	65.0	3.5	3.3	29.3	4.0
B11584	182054/B07554	82	19.7	21.1	51.0	104.0	2.5	75.0	2.5	4.1	23.1	4.0

EXPERIMENT 2425 BNF YIELD TRIAL				PLANTED: 6/19/12								
NAME	PEDIGREE	ENTRY	YIELD CWT IACRE	$\begin{gathered} 100 \text { SEED } \\ \text { WT. (g) } \end{gathered}$	DAYS TO FLOWER	DAYS TO MATURITY	$\begin{gathered} \text { LODGING } \\ (1-5) \end{gathered}$	HEIGHT (cm)	DES. SCORE	BIOMASS	HARVEST INDEX	VIGOR $(1-5)$
B11588	I82054/B07554	86	19.6	25.2	52.0	99.0	1.5	65.0	4.5	2.9	35.3	4.0
B11607	182054/B07554	104	19.6	20.5	47.0	100.0	1.0	65.0	4.5	2.4	34.1	4.0
B11526	182054/B07554	25	19.5	23.1	48.0	99.0	2.0	75.0	4.0	2.3	34.0	4.0
109129	PR0443-151	126	19.4	22.1	49.0	97.0	2.0	55.0	3.5	2.0	40.9	3.0
B11532	182054/B07554	31	19.2	25.3	55.0	105.0	3.0	60.0	2.5	3.5	24.1	4.0
B11601	182054/B07554	98	19.2	26.5	49.0	99.0	3.0	60.0	2.5	4.5	19.7	4.0
B11621	182054/B07554	117	19.1	22.4	49.0	99.0	1.5	50.0	4.0	3.1	30.8	4.0
B11553	182054/B07554	51	18.9	24.5	53.0	108.0	3.5	55.0	2.5	3.5	21.6	3.0
B11596	182054/B07554	94	18.9	21.5	49.0	98.0	1.0	70.0	4.5	2.7	33.0	4.0
B11566	182054/B07554	64	18.8	23.7	50.0	103.0	2.0	70.0	3.5	3.2	27.7	4.0
B11569	I82054/B07554	67	18.7	21.3	49.0	97.0	3.0	55.0	3.0	2.3	33.3	4.0
B11589	182054/B07554	87	18.7	21.5	49.0	98.0	1.0	75.0	5.0	2.7	29.5	4.0
B11615	182054/B07554	112	18.5	24.9	47.0	99.0	2.0	65.0	3.0	2.8	29.3	4.0
B11583	182054/B07554	81	18.4	24.8	50.0	100.0	1.5	65.0	3.5	2.5	32.5	3.0
B11516	182054/B07554	15	18.4	22.9	53.0	100.0	3.5	55.0	2.5	2.7	33.3	4.0
B11522	I82054/B07554	21	18.3	23.5	50.0	104.0	2.0	80.0	3.0	3.5	28.9	4.0
B11613	182054/B07554	110	18.2	19.6	48.0	99.0	1.0	60.0	5.2	2.3	37.4	3.0
B11614	182054/B07554	111	18.2	23.0	50.0	98.0	2.5	65.0	4.5	3.4	28.9	3.0
B11623	182054/B07554	119	18.2	22.0	55.0	99.0	2.0	62.5	4.0	2.9	35.2	4.0
B11612	182054/B07554	109	18.1	23.4	51.0	100.0	1.0	80.0	4.0	3.1	25.3	4.0
B11501	182054/B07554	1	17.9	29.1	49.0	100.0	3.0	65.0	2.0	3.1	23.9	5.0
B11577	182054/B07554	75	17.8	23.9	48.0	98.0	3.0	50.0	3.5	2.6	37.4	4.0
B11561	182054/B07554	59	17.7	20.7	53.0	98.0	2.0	60.0	4.0	2.3	37.7	3.0
B11554	182054/B07554	52	17.7	25.3	56.0	103.0	4.0	55.0	2.0	2.9	24.8	4.0
B11622	I82054/B07554	118	17.6	24.2	50.0	102.0	2.0	70.0	3.5	3.0	29.5	3.0
B11598	182054/B07554	95	17.5	27.8	47.0	103.0	2.0	65.0	3.0	2.4	35.2	3.0
B11507	182054/B07554	6	17.5	26.3	51.0	98.0	3.0	50.0	2.5	2.5	29.2	4.0
B11514	182054/B07554	13	17.5	22.4	50.0	99.0	3.0	65.0	3.0	3.9	24.9	4.0
B11624	182054/B07554	120	17.4	27.2	60.0	105.0	2.5	65.0	2.0	3.9	18.7	4.0
B11591	I82054/B07554	89	17.4	26.0	49.0	99.0	2.5	70.0	4.5	2.9	29.9	4.0
B11559	182054/B07554	57	17.3	24.2	50.0	99.0	1.5	70.0	4.0	4.1	21.3	4.0
B11510	182054/B07554	9	17.2	26.3	51.0	103.0	3.0	65.0	2.5	3.3	23.1	3.0
B11560	182054/B07554	58	17.1	28.8	50.0	99.0	2.5	65.0	3.5	2.8	29.4	4.0
B11586	182054/B07554	84	17.1	23.0	58.0	99.0	3.0	45.0	3.0	2.5	27.9	2.0
B11558	I82054/B07554	56	17.0	26.6	47.0	99.0	3.0	55.0	3.0	2.6	28.3	4.0
B11625	182054/B07554	121	17.0	24.1	48.0	101.0	4.0	35.0	2.0	3.5	25.0	4.0
B11619	182054/B07554	115	17.0	20.4	50.0	100.0	3.0	70.0	3.0	3.1	27.5	3.0
B11520	182054/B07554	19	17.0	24.8	48.0	100.0	4.0	65.0	2.0	2.9	26.2	3.0
B11551	182054/B07554	49	16.7	31.7	58.0	105.0	2.5	35.0	2.0	6.0	15.1	4.0
B11572	I82054/B07554	70	16.7	23.7	53.0	101.0	3.5	50.0	2.0	3.1	23.8	3.0
B11580	182054/B07554	78	16.6	27.8	59.0	106.0	3.5	55.0	2.5	5.2	18.4	4.0
111272	PR1147-6	128	16.6	23.9	47.0	98.0	2.0	67.5	4.5	2.4	32.3	4.0
B04554	B00103*/X00822, ZORRO	124	16.6	21.0	51.0	98.0	1.0	65.0	5.5	2.4	36.9	4.0
B11525	I82054/B07554	24	16.5	25.6	49.0	96.0	2.0	55.0	3.0	2.2	34.4	3.0

EXPERIMENT 2425 BNF YIELD TRIAL				PLANTED: 6/19/12								
NAME	PEDIGREE	ENTRY	YIELD CWT IACRE	$\begin{aligned} & 100 \text { SEED } \\ & \text { WT. (g) } \end{aligned}$	DAYS TO FLOWER	DAYS TO MATURITY	$\begin{gathered} \text { LODGING } \\ (1-5) \end{gathered}$	$\begin{aligned} & \text { HEIGHT } \\ & \text { (cm) } \end{aligned}$	DES. SCORE	BIOMASS	HARVEST INDEX	VIGOR $(1-5)$
B11542	I82054/B07554	40	16.3	26.7	49.0	100.0	3.0	60.0	2.5	2.5	32.2	4.0
B11606	182054/B07554	103	16.3	28.4	48.0	100.0	2.0	75.0	3.5	3.1	25.2	4.0
B11505	182054/B07554	5	16.2	22.7	58.0	109.0	3.0	60.0	1.5	2.2	30.5	3.0
B11564	182054/B07554	62	16.1	26.3	50.0	99.0	1.0	75.0	3.5	2.9	27.1	4.0
B11608	182054/B07554	105	15.8	29.5	50.0	101.0	3.0	60.0	2.0	3.9	18.3	4.0
B11533	182054/B07554	32	15.8	25.5	49.0	99.0	2.0	65.0	3.5	2.6	32.3	3.0
B11534	182054/B07554	33	15.7	27.5	49.0	98.0	3.5	55.0	3.0	2.3	29.4	5.0
B11604	I82054/B07554	101	15.6	26.4	50.0	101.0	3.0	65.0	3.0	3.0	25.7	4.0
B11552	182054/B07554	50	15.6	24.6	58.0	105.0	2.5	85.0	2.5	3.9	21.0	3.0
B11535	182054/B07554	34	15.5	28.1	46.0	99.0	3.5	55.0	2.0	3.7	18.6	4.0
B11508	I82054/B07554	7	15.4	29.7	57.0	110.0	3.5	60.0	1.0	4.8	14.1	4.0
B11550	182054/B07554	48	15.2	29.0	47.0	100.0	3.0	60.0	2.0	2.7	25.8	4.0
B11513	182054/B07554	12	15.2	26.1	47.0	100.0	3.5	50.0	2.5	2.6	30.5	4.0
B11562	182054/B07554	60	15.1	22.7	56.0	108.0	3.5	60.0	2.5	5.3	10.9	3.0
B11600	182054/B07554	97	15.0	27.4	50.0	101.0	2.0	75.0	3.5	3.6	19.1	3.0
B11504	I82054/B07554	4	15.0	25.4	49.0	102.0	3.0	55.0	3.0	3.7	18.5	4.0
B11587	182054/B07554	85	14.8	26.8	52.0	98.0	1.5	70.0	3.0	2.6	32.5	4.0
B11626	182054/B07554	122	14.8	27.0	49.0	100.0	3.5	60.0	2.0	5.3	12.5	4.0
B11502	182054/B07554	2	14.8	26.0	49.0	99.0	3.0	45.0	2.5	2.9	25.8	3.0
B11512	182054/B07554	11	14.5	22.5	54.0	103.0	3.0	60.0	2.0	2.8	26.9	3.0
B11503	I82054/B07554	3	14.4	23.2	59.0	108.0	3.5	70.0	2.0	5.6	13.3	3.0
B11573	I82054/B07554	71	14.1	21.2	53.0	103.0	2.5	55.0	1.5	2.9	25.6	4.0
B11537	I82054/B07554	36	14.0	25.9	58.0	110.0	3.5	40.0	1.5	4.7	12.3	4.0
B11575	182054/B07554	73	14.0	24.5	49.0	102.0	2.5	75.0	2.5	2.4	30.1	3.0
B11540	I82054/B07554	38	13.8	28.6	48.0	97.0	3.0	65.0	3.0	3.7	18.9	5.0
B11515	I82054/B07554	14	13.7	27.0	58.0	108.0	3.0	65.0	2.5	5.5	17.3	4.0
B11518	182054/B07554	17	13.7	29.5	49.0	101.0	3.0	45.0	2.0	3.0	19.6	3.0
182054	PUEBLA 152 MX	123	13.6	27.8	57.0	109.0	4.0	40.0	2.0	4.7	9.4	5.0
B11521	I82054/B07554	20	13.4	23.2	58.0	110.0	4.0	40.0	1.0	4.3	12.9	3.0
B11576	I82054/B07554	74	13.2	22.3	51.0	95.0	1.5	45.0	1.5	1.3	38.6	3.0
B11579	182054/B07554	77	13.1	22.9	47.0	102.0	2.0	65.0	3.5	1.3	43.4	3.0
B11548	182054/B07554	46	12.9	23.9	56.0	106.0	2.0	65.0	3.0	3.1	18.8	3.0
B11528	182054/B07554	27	12.8	23.7	46.0	96.0	3.0	60.0	2.5	2.2	30.8	4.0
B11517	182054/B07554	16	12.5	30.2	51.0	104.0	3.5	55.0	2.0	4.2	15.2	5.0
B11529	I82054/B07554	28	12.5	26.3	58.0	106.0	2.0	45.0	1.5	3.4	17.0	2.0
B11578	I82054/B07554	76	12.1	32.2	48.0	105.0	2.5	60.0	3.0	4.5	12.7	4.0
B11585	I82054/B07554	83	10.0	17.0	46.0	95.0	1.0	46.6	2.2	1.2	35.6	3.0
B11605	182054/B07554	102	9.2	24.1	59.0	109.0	3.0	70.0	2.0	4.2	9.1	3.0
B11599	182054/B07554	96	9.0	25.0	54.0	110.0	2.5	80.0	2.0	6.2	13.9	4.0
B11524	I82054/B07554	23	8.6	22.8	0.0	111.0	3.5	55.0	1.5	8.4	5.5	4.0
B11541	182054/B07554	39	3.5	28.7	52.0	109.0	4.0	35.0	1.5	5.8	6.3	4.0
MEAN (130)			17.9	24.7	50.7	100.7	2.4	61.9	3.1	3.4	27.7	3.6
LSD (0.05)			4.2	1.7	3.7	9.9	1.0	17.2	1.3	1.4	6.9	0.9
CV (\%)			17.5	5.0	4.4	5.9	24.7	16.8	24.9	30.8	18.4	18.5

MSU Saginaw Valley Research and Extension Center
Frankenmuth, MI

Row width	Variety	Yield	Height	Population
15	Vista	28.8	21.5	132,456
15	Medalist	24.9	22.3	128,324
20	Vista	25.4	22.1	118,456
20	Medalist	22.9	22.5	116,978
30	Vista	23.1	23.5	105,279
30	Medalist	22.0	23.5	104,238
		LSD $=2.17$		
	C.V. $=5.9 \%$			

Black Row Width
MSU Saginaw Valley Research and Extension Center Frankenmuth, MI

Row width	Variety	Yield	Height	Population
15	Zorro	28.1	21.1	126,876
15	Shania	26.7	21.2	128,432
20	Zorro	27.4	21.8	118,632
20	Shania	26.4	21.9	116,479
30	Zorro	27.4	22.1	105,387
30	Shania	24.0	22.3	106,368
		LSD=3.01		
		C.V. $=7.5 \%$		

Small Red Row Width
MSU Saginaw Valley Research and Extension Center
Frankenmuth, MI

Row width	Variety	Yield	Height	Population
15	Merlot	26.5	24.7	108,782
20	Merlot	26.2	25.6	102,654
30	Merlot	21.6	26.2	92,345
		LSD $=3.36$		
		C.V. $=7.8 \%$		

Pinto Row Width
MSU Saginaw Valley Research and Extension Center
Frankenmuth, MI
Row width Variety Yield Height Population

15	Eldorado	25.2	24.8	117,322
20	Eldorado	24.2	25.4	101,930
30	Eldorado	22.2	26.6	84,215
	LSD $=3.79$			
	C.V. $=9.2 \%$			

Black Row Width/Population
MSU Saginaw Valley Research and Extension Center
Frankenmuth, MI

Row width	Variety	Yield	Height	Population
15	Zorro	30.2	21.9	143,534
15	Zorro	30.5	22.1	132,422
15	Zorro	28.3	20.2	125,456
15	Zorro	29.1	21.4	114,391
15	Zorro	28.2	21.5	105,343
20	Zorro	28.8	22.3	142,823
20	Zorro	30.2	20.8	130,245
20	Zorro	28.1	21.7	122,487
20	Zorro	28.7	22.1	116,234
20	Zorro	29.4	22.4	102,786
		LSD=1.44		
		C.V. $=3.4 \%$		

Small Red Row Width/Population
MSU Saginaw Valley Research and Extension Center
Frankenmuth, MI

Row width	Variety	Yield	Height	Population
15	Merlot	25.0	23.6	118,465
15	Merlot	25.1	23.9	109,629
15	Merlot	23.2	23.5	97,841
20	Merlot	23.4	23.6	113,514
20	Merlot	24.7	24.2	104,059
20	Merlot	22.3	23.8	94,378
		LSD $=3.60$		
		C.V. $=10 \%$		

2012 White Mold Fungicide Trial
Montcalm Research Farm, Entrican, Michigan
Merlot Small Red

Treatment	Application Incidence Severity				
	Rate	Code	\%infection	\%severity	YIELD
UTC			63	48	1924
Endura	8 oz	AB	43	29	2291
Omega	8 oz	AB	40	27	2350
PROPULSE+INDUCE	8 oz	A	44	31	2362
PROPULSE+INDUCE	10 oz	A	43	29	2410
PROPULSE+INDUCE	8 oz	AB	45	32	2413
PROPULSE+INDUCE	10 oz	$A B$	36	24	2544
PROLINE+INDUCE	5.7 oz	AB	40	28	2280
APPROACH+INDUCE	9 oz	A	50	37	2402
APPROACH+INDUCE	9 oz	$A B$	36	24	2213
				LSD@.05	394
				C.V. Value	11.7\%

Application Code: $\mathrm{A}=100 \%$ or first bloom, $\mathrm{B}=7$ days after 100% bloom
Rating - \% infection "rating" on September 26, \% Incidence, \%severity
Merlot Small Red Beans planted in 20" rows. Irrigation of two . 5 inch per week
Planted:June 14 Harvested: September 28
First Spray: July 28 Second Spray: August 6
Sprayed with 4 row bicycle-wheel CO2 sprayer using 30 gpa at 65 psi.
Twin-Jet nozzle placed directly over the row.
Plot size sprayed was 4 Rows by 30 feet.
Harvest area was middle 2 Rows by 15 feet.

Herbicide-resistant weed management strategies in Roundup Ready sugarbeet

Christy Sprague and Gary Powell, Michigan State University

Location: Saginaw Valley Research and Extension Center	Tillage: Conventional
Planting Date: April 4, 2012	Herbicides: see treatments
Soil Type: Clay loam; 2.2 OM; pH 7.8	Varieties: HM-173RR
Replicated: 4 times	Population: 48,000 seeds/A

Table 1. Sugarbeet injury, weed control, sugarbeet yield and recoverable white sugar per acre (RWSA) for various herbicide programs.

		WEED CONTROL (at Harvest)			SUGARBEET	
Herbicide treatments ${ }^{\text {a }}$	Injury ${ }^{\text {b }}$	Common lambsquarters	Redroot pigweed	Common ragweed	Yield	RWSA
	\%		control		- ton/A -	- lb/A -
Roundup (22 oz) - applied 2X	0	96	99	94	23.3	5494
Roundup (33 oz) - applied 2X	0	98	99	95	23.4	5522
Nortron (PRE) fb. Roundup (33 oz)	10	93	99	93	23.3	5198
Roundup + Betamix (2 pt) fb. Roundup	9	88	99	92	22.5	5118
Roundup + Betamix (3 pt) fb. Roundup	8	94	98	95	24.6	6010
Roundup + Stinger fb. Roundup	15	90	96	95	22.7	5250
Roundup fb. Stinger + Roundup	0	96	98	99	22.9	5557
Roundup fb. Outlook + Roundup	0	96	99	96	22.4	5250
Roundup fb. Warrant + Roundup	0	92	99	93	21.7	4994
Roundup fb. Dual Magnum + Roundup	0	95	99	91	23.6	5427
$\mathrm{LSD}_{0.05}{ }^{\text {c }}$	4	6	2	7	n.s.	809

${ }^{\text {a }}$ POST herbicides were applied when sugarbeet were at the 2- and 6-leaf stages, except for the POST Roundup application after Nortron PRE was applied to 4-leaf sugarbeet. In not otherwise indicated, Roundup PowerMax was applied at 22 fl oz / A and all POST herbicide treatments included ammonium sulfate at $17 \mathrm{lb} / 100 \mathrm{gal}$. See recommendations in the MSU Weed Control Guide for Field Crops.
${ }^{\mathrm{b}}$ Injury was evaluated May 22 (7 d after the 2-leaf application timing)
${ }^{\mathrm{c}}$ Means within a column greater than least significant difference (LSD) value are different from each other.
Summary: This trial was conducted to compare various weed control systems using potential tankmixture partners with glyphosate. Above is a subset of the treatments examined in this trial. Early in the season there was significant sugarbeet injury from PRE applications of Nortron or with treatments that included Betamix or Stinger in the first POST application. If Stinger, Outlook, Dual Magnum or Warrant were added to the $2^{\text {nd }}$ POST application there was very little injury (data not shown). Sugarbeet were able to completely recover from initial injury by May 30 . There initially were some differences in weed control between the herbicide treatments; however by harvest overall weed control was good. Sugarbeet yield of the untreated control was 3.1 tons/A and there was only 715 RWSA produced. This was an 87% and 88% reduction in yield and RWSA, respectively, compared with the highest yielding treatment in this trial. Overall there was no difference in yield between the different treatments, but there were some differences in RWSA. In general, there was not a significant advantage to applying a higher rate $(33 \mathrm{fl} \mathrm{oz} / \mathrm{A})$ of glyphosate for weed control or yield by the end of the season. For the different tank-mixtures, including other products once sugarbeet was past the two-leaf stage generally had little effect on yield. However in the future, different tank-mix partners may need to be included in earlier applications depending on different herbicide-resistant weed situations. Tank-mixture combinations with the $2^{\text {nd }}$ glyphosate application may help reduce the risk of the development of herbicide-resistant weeds.

Tolerance of replanted sugarbeet to Warrant

Christy Sprague and Gary Powell, Michigan State University

Location: Saginaw Valley Research and Extension Center	Tillage: Conventional
Planting Dates: see treatments	Herbicide Application Date: April 4, 2012
Soil Type: Clay loam; 2.2 OM; pH 7.8	Varieties: Hilleshog 9042 RR
Replicated: 4 times	Population: 48,000 seeds/A

Table 1. Main effect of herbicide for sugarbeet planted in to herbicide residues at various weeks after application. Stand counts were taken 6 wks after planting and at harvest, yield, and recoverable white sugar per acre (RWSA) are also presented.

MAIN EFFECT $^{\mathbf{a}}$	STAND (6 WAT) $^{\text {WTAND (FINAL) }}$	STANLD	RWSA	
HERBICIDE $^{\mathbf{b}}$	- plants $/ 100 \mathrm{ft}-$	$-\mathrm{plants} / 100 \mathrm{ft}-$	$-\mathrm{ton} / \mathrm{A}-$	$-\mathrm{lb} / \mathrm{A}-$
No herbicide	$99 \mathrm{~A}^{\mathrm{c}}$	93 A	16.1 B	3427 B
Warrant 3 pt	77 B	72 B	15.7 B	3212 B
Warrant 6 pt	73 B	74 B	16.5 B	3406 B
Dual Magnum	92 A	87 A	19.0 A	4044 A

${ }^{a}$ Main effect of herbicide are averaged over planting dates; sugarbeet were planted weekly for 7 weeks, including the day of application.
${ }^{\mathrm{b}}$ Herbicides were applied on April 4 into a weed-free seed bed; the application rate of Dual Magnum was $1.33 \mathrm{pt} / \mathrm{A}$.
${ }^{\text {c }}$ Means within a column with different letters are significantly different from each other.
Table 2. Main effect of planting date for sugarbeet planted in to herbicide residues at various weeks after application. Stand counts were taken 6 wks after planting and at harvest, yield, and recoverable white sugar per acre (RWSA) are also presented.

MAIN EFFECT $^{\mathbf{a}}$	STAND (6 WAT)	STAND (FINAL)	YIELD	RWSA
PLANTING DATE $^{\mathbf{b}}$	- plants/100 ft	$-\mathrm{plants} / 100 \mathrm{ft}-$	$-\mathrm{ton} / \mathrm{A}-$	$-\mathrm{lb} / \mathrm{A}-$
Week-0	$112 \mathrm{~B}^{\mathrm{c}}$	112 B	23.1 A	4912 A
Week-1	128 A	126 A	21.3 A	5299 A
Week-2	97 C	92 C	18.4 B	3765 B
Week-3	78 D	71 D	17.5 B	3505 BC
Week-4	50 F	43 E	11.7 D	2130 D
Week-5	71 DE	70 D	15.0 C	3022 C
Week-6	60 EF	57 E	10.8 D	2024 D

${ }^{a}$ Main effect of planting dates are averaged over herbicides; herbicides were applied on April 4 into a weed-free seed bed; the application rate of Dual Magnum was $1.33 \mathrm{pt} / \mathrm{A}$.
${ }^{\mathrm{b}}$ Sugarbeet were planted weekly for 7 weeks, including the day of application.
${ }^{\text {c }}$ Means within a column with different letters are significantly different from each other.
Summary: Warrant is a new encapsulated acetochlor product that is being examined as a potential tank-mix partner with glyphosate in Roundup Ready sugarbeet. Preemergence applications of Warrant have been shown to cause significant sugarbeet injury and in some cases reductions in yield. If sugarbeet needs to be replanted after a lay-by application of Warrant sugarbeet injury, reductions in stand, and potential reductions of yield may be a concern. This study was conducted to determine the time interval needed between Warrant applications and replanting sugarbeet. Four different treatments a no herbicide control, Warrant at 1X (3 pt) and 2X (6 pt) the suggested labeled rate, and Dual Magnum a similar herbicide to Warrant currently labeled for use in sugarbeet were examined. In 2011, if sugarbeet were planted into the 1X rate of Warrant or Dual Magnum prior to the 4 week after application planting, sugarbeet stand was significantly lower than the no herbicide treatment. For the 2X Warrant application rate sugarbeet stand was lower until the 5 week planting. In 2012, sugarbeet stand averaged over all planting dates was reduced by Warrant (1X and 2X). But these applications did not affect yield or RWSA compared to the no herbicide control. Averaged over all herbicide applications, planting date significantly affected sugarbeet stand, yield, and RWSA. This year due to the drier weather conditions there was not a planting date by herbicide application interaction, and replanting sugarbeet into Warrant residues did not significantly reduce yield or RWSA compared with the no herbicide control. However, under conditions with more moisture this may be more apparent similar to the 2011 results.

Volunteer corn effects on Roundup Ready sugarbeet yield and quality planted in wide- and narrow-rows

Amanda Harden and Christy Sprague, Michigan State University

Location:	East Lansing/SVREC (Richville)	Row widths:	30- \& 15-inches
Planting Dates:	April 12 (EL); April 4 (SVREC)	Volunteer corn: ‘F2' DeKalb 46-61 "SmartStax"	
Soil Type:	Loam, 2.8 OM, pH 6.6 (EL)		
	Clay Loam, 2.2 OM, pH 7.8 (SVEC)	Tillage:	Conventional
Herbicides:	Roundup PowerMax (22 fl oz/A)+ AMS	Population:	52,000 seeds/A
Variety:	HM-173RR, Roundup Ready	Replicated:	4 times

Table 1. Main effect of row width on sugarbeet yield and recoverable white sugar per acre (RWSA) averaged over volunteer corn populations.

	EAST LANSING		SVREC	
ROW WIDTH	Yield	RWSA	Yield	RWSA
	- tons/A-	$-\mathrm{lbs} / \mathrm{A}-$	- tons/A-	$-\mathrm{lbs} / \mathrm{A}-$
Wide (30-inches)	$19.2 \mathrm{~B}^{\mathrm{a}}$	5442 B	27.9 A	6759 B
Narrow (15-inches)	21.7 A	6379 A	28.5 A	7371 A

${ }^{\text {a }}$ Means within a column with different letters are significantly different from each other
Table 2. Main effect of volunteer corn population on sugarbeet yield and recoverable white sugar per acre (RWSA) averaged over row widths.

	EAST LANSING		SVREC	
VOUNTEER CORN POPULATION	Yield	RWSA	Yield	RWSA
- plants $/ 150 \mathrm{ft}^{2}-$	- tons $/ \mathrm{A}-$	$-\mathrm{lbs} / \mathrm{A}-$	- tons $/ \mathrm{A}-$	$-\mathrm{lbs} / \mathrm{A}-$
0	$22.7 \mathrm{~A}^{\mathrm{a}}$	6389 A	30.1 A	7432 A
3	22.5 A	6439 A	29.7 A	7457 A
6	19.8 B	5845 AB	30.3 A	7474 A
12	21.3 AB	6138 AB	29.2 A	7533 A
24	19.6 B	5687 B	25.1 B	6222 B
48	16.8 C	4964 C	25.0 B	6276 B

${ }^{\text {a }}$ Means within a column with different letters are significantly different from each other
Summary: This trial was conducted to determine the impact of volunteer glyphosate-resistant corn on sugarbeet yield and quality in sugarbeet planted in wide and narrow rows. Various volunteer corn populations were planted the same day as sugarbeet with 'F2' corn seed harvested the previous year. All plots were maintained weed-free with applications of glyphosate. Although not presented, sugarbeet canopy closure was quicker in narrow rows at the SVREC location. Overall at both locations RWSA was higher in sugarbeet planted in narrow rows. This was also reflected in sugarbeet yield at East Lansing. Volunteer corn affected sugarbeet yield similarly between wide- and narrow-rows. At East Lansing, volunteer corn populations of 6 plants per $150 \mathrm{ft}^{2}$ significantly reduced yield and at SVREC volunteer corn populations of 24 plants per $150 \mathrm{ft}^{2}$ reduced yield. Differences in results between the two locations were most likely due to differences in corn growth and biomass. Extremely dry conditions early followed by better moisture later at SVREC resulted in better sugarbeet competition with volunteer corn. However, overall volunteer corn populations can have a significant effect on sugarbeet yield and quality and need to be managed as a significant weed problem.

Control of volunteer Roundup Ready corn in Roundup Ready sugarbeet

Amanda Harden and Christy Sprague, Michigan State University

Location:	East Lansing/SVREC (Richville)	Variety:	HM-173RR, Roundup Ready
Planting Dates:	April 12 (EL); April 4 (SVREC)	Volunteer corn: ${ }^{\text {‘F2' DeKalb 46-61 "SmartStax" }}$	
Soil Type:	Loam, 2.8 OM, pH 6.6 (EL)		
	Clay Loam, 2.2 OM, pH 7.8 (SVEC)	Tillage:	Conventional
Replicated:	4 times	Population:	52,000 seeds/A; 30-inch rows

Table 1. Effect of application timing on volunteer corn control and sugarbeet yield and quality at SVREC.

Removal Timing ${ }^{\text {a }}$	DAP ${ }^{\text {b }}$	Volunteer corn		Sugarbeet	
		Control ${ }^{\text {c }}$	Final biomass	Yield	RWSA
		- \% -	- g/A -	- tons/A -	- lbs/A -
No corn	0	--	0 B	28.8 A	7399 A
V2	42	$99 \mathrm{~A}^{\text {d }}$	5.9 B	31.8 A	7941 A
V3-V4	53	98 A	2.9 B	29.0 A	6917 A
V5-V6	62	95 B	60 B	29.4 A	7205 A
V6-V7	69	82 C	101 B	28.9 A	6860 A
V7	77	76 D	111 B	31.2 A	7529 A
Untreated	--	0 E	1287 A	28.9 A	6930 A

${ }^{\text {a }}$ Weeds were controlled at these volunteer corn stages using SelectMax or Assure II + Roundup PowerMax ($22 \mathrm{fl} \mathrm{oz} / \mathrm{A}$) + AMS ($17 \mathrm{lb} / 100$ gal). There were no differences between the different herbicide treatments so results were combined.
${ }^{\mathrm{b}}$ Days after planting, application time.
${ }^{\text {c }}$ Control was evaluated ~ 16 days after the last application timing.
${ }^{\mathrm{d}}$ Means within a column with different letters are significantly different from each other.
Table 2. Effect of application timing on volunteer corn control and sugarbeet yield and quality at East Lansing.

Removal Timing ${ }^{\text {a }}$	DAP ${ }^{\text {b }}$	Volunteer corn		Sugarbeet	
		Control ${ }^{\text {c }}$	Final biomass	Yield	RWSA
		- \% -	- g/A -	- tons/A -	- lbs/A -
No corn	0	--	0 B	21.4 B	5670 B
V2	49	$99 \mathrm{~A}^{\text {d }}$	0 B	21.9 B	5779 B
V4	63	98 A	23 B	22.6 AB	6103 AB
V6	68	98 A	17 B	24.5 A	6688 A
V10	79	91 B	162 B	20.8 B	5557 B
V10	86	73 C	408 B	21.6 AB	5999 B
Untreated	--	0 D	2971 A	15.3 C	4162 C

${ }^{\text {a }}$ Weeds were controlled at these volunteer corn stages using SelectMax or Assure II + Roundup PowerMax (22 fl oz/A) + AMS ($17 \mathrm{lb} / 100$ gal). There were no differences between the different herbicide treatments so results were combined.
${ }^{\mathrm{b}}$ Days after planting, application time.
${ }^{\text {c }}$ Control was evaluated ~ 16 days after the last application timing.
${ }^{\mathrm{d}}$ Means within a column with different letters are significantly different from each other.
Summary: This trial was conducted to determine the impact of different volunteer corn control timings with Assure II and SelectMax on volunteer corn control, sugarbeet yield and recoverable white sugar per acre.
Volunteer corn was planted at 12 plants per $150 \mathrm{ft}^{2}$. Volunteer corn was controlled at various stages with either Assure II or SelectMax. Results were similar between the two herbicides and therefore are combined. Volunteer corn control was lower for the later application timings by mid-season. However, by harvest volunteer corn control was similar between timings and volunteer corn biomass was significantly reduced. Differences in sugarbeet yield and RWSA did not occur at SVREC, probably due to poor volunteer corn growth. However, at East Lansing there were differences in yield with an overall yield reduction of 30% if volunteer corn was not controlled. Due to overall dry conditions this year there were very few differences in the time for volunteer corn removal. This research will be repeated in 2013.

Evaluation of preharvest desiccants in dry edible beans (Saginaw Valley Research and Extension Center - 2012)

Christy Sprague and Gary Powell, Michigan State University

Location: \quad Richville (SVREC)	Tillage:	Conventional		
Planting Date: June 13, 2012	Variety:	'Zorro’ black beans		
Preharvest Application Date:	Sept. 5, 2012	Row width:	20-inch	Soil Type: \quad Clay loam
:---				

Figure 1. Preharvest treatment effects on dry bean desiccation 3 and 6 days after treatment (DAT).

Summary: This study was conducted to examine various preharvest treatments for dry edible bean desiccation. At the 3 DAT evaluation, Gramoxone alone and tank-mixed with Sharpen provided significantly higher ($\mathrm{p} \leq 0.05$) dry bean desiccation than any of the other treatments. This was in contrast to results from 2011 where Valor ($1.5 \mathrm{oz} / \mathrm{A}$) + MSO and Sharpen ($1 \mathrm{fl} \mathrm{oz} / \mathrm{A}$) + MSO + AMS provided the greatest desiccation at this timing. By 6 DAT, the Gramoxone treatments still provided the greatest dry bean desiccation ($>90 \%$), however Valor, Sharpen and the combination of the two provided greater than 75% dry bean desiccation. All of these treatments provided greater than 90% desiccation in 2011. Differences in moisture and temperature between the two years at the time of desiccation may help explain the differences in the speed of desiccation between the two years. This year conditions were cooler and wetter at the time of desiccation. By 14 DAT all treatments with the exception of Aim (2 fl oz) + MSO provided 99% dry bean desiccation. From these results and from those of previous years there are several effective desiccation products. However, each of these products has specific precautions and limitations that need to be considered. Information on these restrictions and how to best use these products can be found in Chapter 5 of the 2013 MSU Weed Control Guide for Field Crops (E434). This research was supported by various companies and Michigan Dry Bean Commission funding from the Michigan Department of Agriculture Specialty Crops grant.

[^0]: *Station moved from Saginaw, MI to Richville, MI

[^1]: * Station moved to from Saginaw, MI to Richville, MI

