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H I G H L I G H T S G R A P H I C A L  A B S T R A C T

• Satellite-based models excel in predict
ing spatiotemporal dynamics of coastal 
hypoxia.

• We mapped the hypoxia (dead zone) 
dynamics in the Gulf of Mexico from 
2000 to 2019.

• The size and persistence of Gulf hypoxia 
peaked in 2009 and declined through 
2013.

• The 2010–2019 average dead zone was 
about twice the 5000 km2 reduction 
target.

• Our approach is applicable to global 
coastal dead zone monitoring efforts.

A R T I C L E  I N F O
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A B S T R A C T

Spreading marine dead zones (or hypoxia) are threatening coastal ecosystems and affecting billions of people’s 
livelihoods globally. However, the lack of field observations makes it challenging to estimate dead zones with 
spatial precision and across large scales. While satellites offer great potential for detecting environmental 
changes through large-scale and temporal consistent data, they have yet to be fully integrated into the spatio- 
temporal dynamic mapping of hypoxia. To address this limitation, we integrated satellite imagery with field 
observations in random forest models on the Google Earth Engine platform to characterize dead zone dynamics 
from 2000 to 2019. We applied the workflow to the Gulf of Mexico, which has the largest dead zones in North 
America. Our model explained 64 % (± 5 %) of the variance in predicting dead zones using satellite data. The 
analysis revealed that dead zones in the Gulf peaked in 2009 (17,699 ± 679 km2) and contracted afterward in 
terms of both size and persistence (% days with hypoxia). Despite this contraction, the average size between 
2010 and 2019 was twice that of the coastal reduction goal (< 5000 km2) set by the Gulf of Mexico Hypoxia Task 
Force. Furthermore, dead zones occurred more frequently in the western Gulf, and nearly half of the western 
region experienced dead zones annually. In addition to inter-annual changes, our analysis highlighted the intra- 
annual dynamics of this phenomenon. Notably, dead zones expanded in June, peaking in size from mid-August to 
early September. The high temporal and spatial resolution of this dataset allows policymakers to develop tar
geted management plans and environmental policies. Our approach, which incorporates remote sensing for long- 
term monitoring of coastal dead zones, can be applied to worldwide monitoring initiatives when paired with 
local field observations.

1. Introduction

Coastal eutrophication and the emergence of dead zones—defined by 
hypoxia (oxygen concentrations ≤2 mg/l) and anoxia beneath the 
water—have increased exponentially over the past half-century (Diaz 
and Rosenberg, 2008). Globally, over 500 coastal dead zones have been 
identified (Breitburg et al., 2018), some of which have expanded into 
mega dead zones (exceeding 5000 km2, as defined in this study; see 
Methods), while others, such as the Gulf of Oman, continue to grow 
rapidly. Yet due to the limited availability of monitoring in many re
gions, the true number of dead zones may be much higher than currently 
estimated. This gap in monitoring is critical as more than three billion 
people depend on marine and coastal ecosystems for their livelihoods 
(IPBES, 2019). Marine dead zones can result in biodiversity loss and 
declines in ecosystem services (e.g., commercial and recreation fishing, 
and tourism) that underpin human well-being (Breitburg et al., 2018). 
Therefore, it is critical to improve the understanding and prediction of 
marine ecosystem change at large spatiotemporal scales in order to 
inform conservation decisions, management plans, and environmental 
policies that seek to maintain marine ecosystem services.

Traditionally, marine dead zone research and monitoring has been 
based largely on resource-intensive cruise field observations, which are 
inherently limited in their spatial and temporal extent (Li et al., 2023b). 
For instance, in the Gulf of Mexico, cruise hypoxia monitoring across the 
continental shelf has occurred since 1985 (Rabalais et al., 2010; Smith 

et al., 2017). In the Baltic Sea, multinational monitoring programs and 
research cruises have collected water column measurements since 1900 
(Carstensen et al., 2014; Conley et al., 2011; Murray et al., 2019). 
Similarly, dissolved oxygen monitoring in the Adriatic Sea began as 
early as 1911, conducted by various institutes and projects, with 
increased monitoring frequency implemented since the 1970s (Brush 
et al., 2020; Lipizer et al., 2014). The funding and labor resources 
necessary to monitor these large regions are not adequately available in 
most coastal regions, leading to either spatially sparse and temporally 
discrete or nonexistent monitoring (e.g., in the East China Sea (Chen 
et al., 2007; Zhu et al., 2011)). Further, our comprehension of the dy
namics of coastal hypoxia is limited by cruise field constraints as existing 
studies are often restricted to temporal and spatial extent. Fieldwork 
campaigns are not only constrained by the costly labor-intensive and 
time-consuming nature but may also be disrupted by unexpected storms, 
limited financial and logistical support, and external factors such as 
pandemics, which have temporarily impacted cruise trips and contin
uous data collection efforts.

To address this data gap, process-based and statistical hypoxia 
models have been developed to understand coastal hypoxia patterns and 
dynamics (Li et al., 2023b). Process-based models use biophysical and 
biogeochemical processes, including nutrient transport, primary pro
duction, as well as water stratification, to predict dissolved oxygen (DO) 
(Del Giudice et al., 2020; Fennel et al., 2016; Laurent and Fennel, 2019; 
Obenour et al., 2015; Ou and Xue, 2024; Scavia et al., 2013; Wang and 
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Justić, 2009). To calibrate and validate these models, site-specific 
parameter data such as respiration in the water column and sediment 
oxygen consumption are often required. In many locations, collecting 
these data is prohibitive to using these models. Statistical models pro
vide an alternative and broadly applicable approach to predicting hyp
oxia by delineating the empirical-statistical relationship between the 
size of summer hypoxia zone and factors such as nutrient loads and river 
discharge (Forrest et al., 2011; Greene et al., 2009; Turner et al., 2012). 
However, conventional hypoxia statistical models typically focus solely 
on estimating the total size of hypoxic areas. Consequently, while 
existing process-based and statistical hypoxia models have advanced our 
comprehension of coastal hypoxia issues, only a limited number of these 
models provide spatially explicit information on hypoxia (Justić et al., 
2017; Matli et al., 2020).

Earth observation satellites provide an alternative means of 
acquiring large-scale and consistent data for monitoring environmental 
changes in both terrestrial and marine ecosystems (Gorelick et al., 
2017). For example, satellite remote sensing has been used to map 
phytoplankton biomass, colored dissolved organic matter load, and sea 
surface temperature (Le et al., 2014; Zhou et al., 2020). These satellite- 
derived environment variables can serve as key indicators for predicting 
dead zones. Long-term remote sensing time series provide valuable op
portunities to track historical changes in marine ecosystems and monitor 
dead zones in real time. However, few studies have utilized these 
datasets for coastal dead zone monitoring. Notably, Druon et al. (2004)
developed a Eutrophication Risk Index (EUTRISK) using satellite- 
derived chlorophyll-a data from SeaWiFS (Sea-viewing Wide Field-of- 
view Sensor). While satellite imagery does not directly capture 
bottom-water hypoxia, this index estimated its potential spatial distri
bution by integrating bottom oxygen availability with the flux of organic 
matter reaching the seabed, primarily inferred from satellite-derived 
chlorophyll-a (Druon et al., 2004). Additionally, Kim et al. character
ized the relationship between surface DO and water temperature (Kim 
et al., 2020). They observed a robust inverse correlation between surface 
dissolved oxygen and water temperature, highlighting the capability of 
remote sensing data in modeling surface DO. While this work is prom
ising, hypoxia throughout the water column—particularly at greater 
depths—is of greater concern than surface hypoxia, as hypoxia at depth 
is more prevalent and has more severe impacts on marine ecosystems 
(Rabotyagov et al., 2014; Tomasetti and Gobler, 2020). More recently, Li 
et al. advanced coastal hypoxia mapping approaches by applying the 
Moderate Resolution Imaging Spectroradiometer (MODIS) satellite im
agery to predict bottom DO (Li et al., 2023b). To date, few studies have 
applied long-term satellite time series to characterize spatiotemporal 
dynamics of coastal dead zones.

We addressed this gap in dead zone monitoring by using publicly 
available satellite imagery and on-site field observations in the Gulf of 
Mexico. We leveraged the Google Earth Engine (GEE) cloud computing 
platform to estimate dead zone coverage in the Gulf of Mexico from 
2000 to 2019. This timeframe was selected to ensure the availability and 
alignment of both satellite and field observations. Satellite time series 
provides a valuable opportunity to assess potential time lags between 
surface-detectable factors (e.g., phytoplankton blooms, temperature 
fluctuations) and the onset of bottom-water hypoxia (see Section 2.4.3). 
By leveraging this approach, our study advances the modeling of 
spatiotemporal hypoxic dynamics, improving both monitoring and 
predictive capabilities. Overall, this study advances coastal hypoxia 
research through three key innovations: First, we integrate satellite 
remote sensing with machine learning to model hypoxia at unprece
dented spatiotemporal resolution, bridging a critical gap in long-term 
monitoring. Second, our high-resolution mapping captures intra- 
annual dead zone dynamics, revealing seasonal and episodic patterns 
often overlooked in coarse inter-annual analyses. Third, we develop a 
scalable, open-source framework that enables global application, 
providing policymakers and conservation agencies with a practical tool 
for rapid assessment and management of hypoxic zones.

2. Materials and methods

2.1. Study region

The Gulf of Mexico, as illustrated in Fig. 1, harbors the most exten
sive hypoxic zone in North America and ranks as the second largest 
human-caused coastal hypoxic zone globally. In addition, it was selected 
as the study area due to the availability of abundant and temporally 
consistent dissolved oxygen (DO) observations, which are critical for 
robust model training and validation. The primary cause of hypoxia in 
the Gulf is the influx of excessive nutrients originating from the human- 
dominated and agriculturally intensive Mississippi River basin that 
drains into the Gulf (Pitcher et al., 2021). The Mississippi River basin 
produces about 80 % of the corn and soybeans, and much of the cotton, 
rice, sorghum, and wheat in the United States. The heightened intensity 
of agricultural activity around the mid-20th century coincides with a 
significant rise in nutrient (e.g., nitrogen and phosphorus) concentra
tions observed in the Lower Mississippi River (Mitsch et al., 2001). 
Consequently, the hypoxic zone in the Gulf has been estimated to be as 
large as 22,000 km2 in 2008. To mitigate the negative impacts of the 
hypoxic zone, the federally and state-established Hypoxia Task Force 
initially set a goal to reduce its size to 5000 km2 by 2015 (US EPA, 
2008). This target has since been extended to 2035 (US EPA, 2023). In 
this study, we define a hypoxic zone exceeding 5000 km2 as a “mega 
dead zone.” This threshold was chosen for two reasons: first, it repre
sents a challenging reduction goal for the Gulf of Mexico, and second, it 
corresponds to the 90th percentile of the size distribution of over 400 
global dead zones reviewed by Diaz and Rosenberg (2008).

2.2. Field observations

The coastal water observation data for the 2000–2019 period were 
compiled from multiple sources including the Southeast Area Moni
toring and Assessment Program (SEAMAP) and Louisiana Universities 
Marine Consortium (LUMCON) (Fig. 2 and Fig. S2). This dataset in
cludes 779,456 samples collected from 150 monitoring cruises at 8117 
locations in the Gulf (Figs. 1 & 2). Water sample data include DO 
measurements, coordinate locations (longitude and latitude), water 
temperature, sampling date, and depth. The DO measurements were 
primarily collected using rosette-mounted DO probes by all organiza
tions, except for Louisiana Department of Wildlife and Fisheries (LDWF) 
and, in some cases, LUMCON. LUMCON primarily utilized hand-held DO 
probes, in addition to rosette-mounted probes in most years, while 
LDWF exclusively relied on hand-held DO probes. Detailed data 
description and data assimilation approach can refer to Matli et al. 
(Matli et al., 2020, 2018). We filtered the dataset to include only samples 
collected at depths of 3–80 m, as data beyond this range are sparse in the 
region and this depth range is typical of the Louisiana–Texas shelf region 
where hypoxia commonly occurs (Obenour et al., 2013). Additionally, 
we limited our model development to data gathered between May 1 to 
September 31 each year, given that hypoxia primarily occurs during the 
summertime, and most of the water samples were collected within this 
timeframe (Matli et al., 2018) (Fig. S3).

2.3. Satellite data

We obtained daily MODIS Aqua and Terra Ocean Color level-3 
products from May 1 to September 30 during the period of 2000–2019 
using Google Earth Engine (GEE). These data included ocean color and 
estimated biogeochemistry data at the spatial resolution of approxi
mately 4500 m. To predict hypoxia levels, we considered all 14 available 
satellite-derived variables from the aforementioned MODIS dataset, 
including ten ocean color bands (412, 443, 469, 488, 531, 547, 555, 645, 
667, and 678 nm), three ocean biogeochemical variables (chlor_a – 
chlorophyll-a concentration, nflh – normalized fluorescence line-height, 
poc – particulate organic carbon), and sea surface temperature (sst) 
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(Table 1). These variables are considered important factors in modeling 
coastal hypoxia. For example, seawater temperature can affect water 
thermal stratification, solubility, and phytoplankton blooms (Jane et al., 
2021; Limburg et al., 2020; Turner et al., 2024). While colder water 
holds more oxygen, thermal stratification driven by density differences 
can prevent mixing between surface and deeper layers, limiting the 
transport of oxygen to deeper waters and exacerbating hypoxia. 
Chlorophyll-a concentration is often utilized as an indicator for phyto
plankton blooms, which have the most direct linkage with dead zones 
(Klemas, 2011; Le et al., 2016; Leming and Stuntz, 1984). In the Gulf of 
Mexico, hypoxia typically follows coastal eutrophication triggered by 
the excessive runoff of nutrients from neighboring river basins, partic
ularly the Mississippi River basin. To ensure cloud-free or near-cloud- 
free and wall-to-wall coverage, we used Terra Ocean Color level-3 
products to fill missing pixels in MODIS Aqua Ocean Color level-3 
product, and used five-day median MODIS composites as model inputs.

In addition, we also included gridded datasets of wind speed, water 
salinity, water velocity, and water temperature in the vertical profiles, 
obtained from NOAA (Cummings and Smedstad, 2013). Wind speed and 
sea surface temperature are reported to play roles in the biophysical 
processes controlling hypoxia (e.g., photosynthesis, and stratification) 
(Altieri and Gedan, 2015; Feng et al., 2012; Jane et al., 2021; Limburg 
et al., 2020). Salinity influences water density and stratification, which 
can hinder the mixing of oxygen-rich surface water with oxygen-poor 
bottom water, thus intensifying hypoxia (Kralj et al., 2019; Rabalais 
et al., 2010). Water velocity plays a crucial role in either disrupting or 
maintaining this stratification; faster currents can enhance oxygenation 
by mixing layers, while slower currents may allow stratification to 
persist, promoting hypoxic conditions (Allahdadi et al., 2013). We did 
not include seawater density, because it is determined by temperature 
and salinity, and gridded data for seawater density is not available. We 
additionally used gridded bathymetry maps from the General Bathy
metric Chart of the Oceans (GEBCO, 2019) to determine the depth of the 
water bottom. All the gridded data were resampled to match MODIS 
Ocean Color product resolution. In total, 25 satellite-derived variables 
were included in the initial analysis (Table 1).

2.4. Dead zone prediction using satellite imagery

To detect dead zones from remote space, it is important to under
stand the biological phenomena and underlying processes. Although the 

dead zone formation involves multiple complex biophysical and chem
ical processes (Fig. S1), it is well-known that, in the Gulf of Mexico, 
hypoxia is usually preceded by coastal eutrophication driven by nutrient 
runoffs from the adjacent river basin, especially from the Mississippi 
River basin. Recent studies also reported climate warming can further 
fuel the process of blooms and seawater thermal stratification (Altieri 
and Gedan, 2015; Breitburg et al., 2018; Jane et al., 2021; Limburg et al., 
2020). Additionally, warming accelerates heterotrophic respiration and 
bacterial degradation (Kim et al., 2023; Turner et al., 2024), directly 
contributing to oxygen depletion in seawater.

2.4.1. Modeling
We used a random forest regression (RFR) model to fit the DO ob

servations with the remote sensing predictors mentioned above. RFR is 
often used in remote sensing applications as it captures hidden patterns 
and nonlinear interactions between features in large, complex datasets 
(Chen et al., 2019; Hutengs and Vohland, 2016). The random forest 
approach is well-suited for high-dimensional datasets and has been 
shown to deliver high predictive accuracy (Belgiu and Drăguţ, 2016; Lin, 
2017; Teluguntla et al., 2018). In our earlier work (Li et al., 2023b), we 
evaluated the performance of three modeling approaches—RFR, lagged 
linear regression, and functional data analysis—for estimating the 
spatiotemporal variation of hypoxia in the Gulf of Mexico using 2014 
data. Among the models tested, the random forest regression out
performed the others in predicting bottom dissolved oxygen from 
satellite-derived variables. Based on this demonstrated performance, we 
selected the random forest model for the present analysis to extend the 
study across a longer time frame and broader spatial scale.

We employed the RFR algorithm integrated into the Google Earth 
Engine (GEE), enabling us to create a comprehensive workflow within a 
unified platform. This framework facilitates scalability by allowing 
other regions to adopt the workflow and integrate region-specific data 
and parameters to train locally calibrated models (Fig. 3). Remotely 
sensed data were extracted from each sampling location within a five- 
day window of when the sample was collected. Following common 
practice in similar modeling studies (Linderman et al., 2005; Rodriguez- 
Galiano et al., 2012; Rubí et al., 2023), we randomly chose 70 % of the 
8117 field DO measurements (Fig. 1) as training samples, while the 
remaining 30 % were reserved for model validation. The 70/30 split 
strikes a balance between providing sufficient data for training the 
model and retaining enough data to effectively assess its generalization 

Fig. 1. Geographic distribution of water sampling locations in the Gulf of Mexico.
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capabilities (Rubí et al., 2023). To reduce the risk of overfitting and 
assess model robustness, we repeated the training-validation process 
using multiple random seeds (n = 10), evaluating model performance 
across each partition (Li et al., 2023b). We fine-tuned the RFR param
eters following established methods (Pelletier et al., 2016; You et al., 
2021). This optimization process led to setting the “numberOfTrees”, 
representing the count of binary classification and regression trees, to 99 
for our modeling. Other parameters were set as the GEE default. Next, 
we selected twelve variables for the final model according to the 
importance score of each input feature (Fig. 4, and Fig. S4) and with 
consideration of multicollinearity among variables. The importance 
scores were derived from the RFR model as a calculation of how often 
predictors were used in trees built by the model. These scores are often 
used to constrain the number of predictor variables and thereby reduce 
computational cost and stabilize classification results (Huang and Zhu, 
2013; Xia et al., 2022).

2.4.2. Prediction performance
The prediction performance of the RFR models was evaluated using 

the coefficient of determination: R2, root mean square error (RMSE), and 
the mean absolute error (MAE).

2.4.3. Time lags in satellite prediction of bottom DO concentration
As there is likely a time lag between what can be detected on the 

surface (e.g., phytoplankton events, temperature variations) and hyp
oxia occurrence in bottom waters beneath the surface (Fig. S1, and 
Fig. S5), we tested different lag times for our model. Some studies sug
gest that the time lag between surface water chlorophyll biomass and 
bottom-water low dissolved oxygen can vary from a few days to more 
than two months (Chen et al., 2014; Justić et al., 1993; Zhou et al., 
2020). Therefore, we investigated time lags from 0 to 80 days (equiva
lent to two months plus an additional three-week buffer period). To 
empirically identify the optimal time lag for accurate prediction, we 
trained RFR models using predictor variables collected at various time 
lags (0–80 days) where each model included only one time lag. We 
subsequently assessed model performance at each time lag and selected 
the time window when satellite-derived predictors exhibited the highest 
performance to map hypoxia in the Gulf of Mexico from 2000 to 2019.

Fig. 2. The number of dissolved oxygen (DO) sampling locations (assuming one sample per location) in the Gulf by year and by collection agency.
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2.4.4. Mapping intra- and inter-annual dead zone occurrence
We define the annual maximum dead zone as the total area of lo

cations experiencing hypoxia during the summer period (May–Sep
tember) within each year. This provides an estimation of the total 
affected area for each year, and allows us to compare our modeled dead 
zone predictions with those reported by other agencies. To measure the 
persistence of dead zones each year, we used the intra-annual dead 
zone occurrence (DZOy) to measure the frequency with which dead 
zones occurred during the summer period each year. DZOy is computed 
at the pixel level, as the percentage of the number of days (d) with a 
detected dead zone (DDZ) among the total days with valid observations 

(VO) within a certain year (y; Eq. 1). Similarly, we used inter-annual 
dead zone occurrence (DZO) to measure the variability in the presence 
of dead zones across years. Inter-DZO is also computed at the pixel level 
as the percentage of the total years with detected dead zones (DDZ) 
relative to the total years with valid observations (VO) over the 20-year 
period (2000–2019; Eq. 2). 

DZOy =
(

ΣDDZd
y

/
ΣVOd

y

)
× 100% (1) 

DZO =
(
ΣDDZy

/
ΣVOy

)
×100% (2) 

Table 1 
Data sources.

Data description Variables † Resolution Availability Data source GEE Collection

MODIS Aqua Ocean 
Color level 3 
product

chlor_a, nflh, poc, Rrs_412, Rrs_443, 
Rrs_469, Rrs_488, Rrs_531, Rrs_547, 
Rrs_555, Rrs_645, Rrs_667, Rrs_678, sst

4616 m; Daily 2002-07-03 
– Now

NASA Goddard Space Flight 
Center, Ocean Ecology 
Laboratory, Ocean Biology 
Processing Group

ee.ImageCollection(“NASA/ 
OCEANDATA/MODIS- 
Aqua/L3SMI”)

MODIS Terra Ocean 
Color level 3 
product

The same variables as above, i.e., the 
MODIS Aqua Ocean Color level 3 product

4616 m; Daily 2000-02-24 
– Now

The same as above ee.ImageCollection(“NASA/ 
OCEANDATA/MODIS- 
Terra/L3SMI”)

AVHRR Sea Surface 
Temperature 
Climate Data

wind_speed sea_surface_temperature 4000 m; Twice-daily 1981-08-24 
– Now

NOAA National 
Oceanographic Data Center

ee.ImageCollection 
(“NOAA/CDR/ 
SST_PATHFINDER/V53”)

Hybrid Coordinate 
Ocean Model, 
Water Velocity ‡

velocity_u_x (Eastward sea water velocity 
at a depth of 0–100 m); velocity_v_x 
(Northward sea water velocity at a depth 
of 0–100 m)

Horizontal: 8905 m; 
Vertical: 2–5 m intervals at 
depths of 0–50 m, and 10 m 
intervals at depths of 
50–100 m; Daily

1992-10-02 
– Now

National Ocean Partnership 
Program (NOPP)

ee.ImageCollection 
(“HYCOM/ 
sea_water_velocity”)

Hybrid Coordinate 
Ocean Model, 
Water Temperature 
and Salinity ‡

salinity_x (Sea water salinity, in practical 
salinity units, at a depth of 0–100 m); 
water_temp_x (Sea water temperature at a 
depth of 0–100 m)

Horizontal: 8905 m; 
Vertical: 2–5 m intervals at 
depths of 0–50 m, and 10 m 
intervals at depths of 
50–100 m; Daily

1992-10-02 
- Now

National Ocean Partnership 
Program (NOPP)

ee.ImageCollection 
(‘HYCOM/ 
sea_temp_salinity’)

Gridded Bathymetry 
Data

Bathymetry 450 m; No temporal 
resolution

2020 British Oceanographic Data 
Centre (BODC)

ee.ImageCollection 
(“projects/sat-io/open- 
datasets/gebco/ 
gebco_grid”)

† The rationale for selecting variables is detailed in Section 2.3. ‡ For water velocity, temperature and salinity, we used surface values and surface-bottom differences at 
each location, rather than the full vertical profile.

Fig. 3. Workflow for dead zone prediction with random forest regression (RFR) model. Satellite-derived variables from MODIS and the Hybrid Coordinate Ocean 
Model (HYCOM) were integrated with field-collected water samples by testing a range of potential time lags.

Y. Li et al.                                                                                                                                                                                                                                        Science of the Total Environment 979 (2025) 179461 

6 



3. Results

3.1. Temporal changes of dead zones

Our analysis shows that satellite-derived predictors collected on 
30–32 days achieved the most accurate predictions of DO, as this model 
had the highest R2 (R2 = 0.64 ± 0.05) and lowest RMSE and MAE 
(Fig. 5). Therefore, we chose satellite imagery from these date ranges as 
model inputs when implementing the RFR for hypoxia mapping. The 
hypoxic area estimated using this model increased steadily since 2000, 
peaked in 2009, and subsequently declined through 2013. It stayed at a 

consistent size of ~10,000 km2 until 2019 (Fig. 6). Although the dead 
zone area decreased after 2009, the average size (mean = 11,245 ±
3574 km2, 2009–2019) continued to exceed the coastal reduction goal 
set by the 2008 Gulf Hypoxia Action Plan. In most years, dead zones 
began expanding in June and peaked during mid-August or September 
(Fig. 7). The dead zones persisted for over three months annually. Since 
2011, however, the mega dead zones (area > 5000 km2) typically per
sisted for up to one month.

Fig. 4. Importance scores of the selected variables in each lagged random forest regression model (A) and in the final model (B). In (A), each panel presents the 
results from the models with a range of time lags. For example, the panel named “0–5” shows the average variable importance from models with lagged satellite 
predictors at 1 to 5-day lags. The error bars represent 95 % confidence intervals. Temp – Sea water temperature, lon – longitude, lat – latitude, [xxx]_dif – the 
difference between values on the surface and bottom water, DOY – day of the year. Refer to Table 1 for all other variable information. See Fig. S4 for the importance 
scores of all the 28 pre-selected variables (including 25 satellite-derived variables, plus DOY, longitude, and latitude).
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3.2. Spatial patterns

Most dead zones were detected in nearshore waters over the summer. 
We found that dead zones occurred more frequently (in eight of the 20 
years) on the west side of the Mississippi-Atchafalaya Rivers estuary 
than in other regions (Fig. 8A). Nearly half of the hotspot regions (i.e., 
the west side) experienced dead zones annually over the 20-year study 
period. In addition to the northern Gulf region, we also detected dead 
zone occurrences at the Suwannee River estuary in the eastern Gulf, an 
area seldom examined in relation to this issue. There is no substantial 
difference in model performance across different spatial regions 
(Fig. S6), and 75 % of the testing data points have RMSE <1 mg/l and 94 
% are <2 mg/l (mean RMSE = 0.75, sd = 0.63; Fig. 8B).

We further investigated the intra-annual dead zone occurrence each 
summer from 2000 to 2019 (Fig. 9). Similar to the interannual dead zone 
occurrence, areas with high intra-annual dead zone occurrence were 
predominantly found in the northern Gulf region, as well as at the es
tuary of the Suwannee River (Fig. 9A). The area with over 60 % dead 
zone occurrence over summertime (or over 3 months) exceeded the 
5000 km2 redline from 2001 to 2012, while the subsequent years were 
below the line (Fig. 9B). This indicates that the dead zones became both 
smaller and less persistent after 2012 than in earlier years.

4. Discussion

This study presented the first spatiotemporal mapping of dead zones 
across 20 years using remotely sensed imagery and machine learning. By 
introducing and emphasizing the role of satellite imagery in the 
modeling and prediction of coastal hypoxia, we advanced the approach 

to monitor and better understand the spatial and temporal dynamics of 
coastal dead zones. The spatially explicit dead zone maps derived from 
this analysis unveil both the geospatial attributes of the dead zones in 
the Gulf of Mexico and their temporal changes across multiple scales, 
ranging from days to years.

Our results indicate that the Gulf dead zones peaked in 2009 and 
faded afterward in terms of both size and persistence (measured by 
intra-annual occurrence). Although the dead zone decreased in size, the 
average size of these hypoxic regions remains approximately two times 
larger than the targeted coastal reduction goal of below 5000 km2, 
highlighting the critical need for continual management and monitoring 
efforts. While USGS data indicate a reduced nitrogen application rate 
from 2012 to 2017 (Falcone, 2021), the reduction magnitude is not 
substantial (Fig. S6), and likely contributes to the persistence of hypoxic 
regions over the years.

4.1. Using satellite imagery for dead zone estimation

Our approach using remote sensing provides insight into selecting 
satellite-derived predictor variables and the appropriate time lags for 
dead zone prediction. We found the satellite-derived variables can 
explain 64 % (± 5 %) of the variance in bottom DO, and our model 
outperforms existing models, which typically explain 41 %–58 % of 
dissolved oxygen variability (Matli et al., 2020, 2018).

Previous research on dead zone modeling and prediction rarely used 
satellite data (Matli et al., 2020; Murphy et al., 2011; NOAA, 2022; 
Scavia et al., 2017; Zhou et al., 2014). Because traditional coastal hyp
oxia monitoring based on cruise trips is constrained by weather condi
tions, funding availability, and potential interruption due to unexpected 

Fig. 5. Model performance for dissolved oxygen (DO) estimation with satellite predictors at different time lags. Model performance is evaluated by R2, RMSE (mg/l), 
and MAE (mg/l) between estimated and observed DO. Lines depict mean values, and the gray shades represent 95 % confidence intervals (CIs). The vertical blue 
shade highlights dates when satellite predictors achieved relatively high accuracy (R2 = 0.68, RMSE = 0.88, MAE = 0.67).
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shocks (e.g., the COVID-19 pandemic), the ground measurements are 
limited in spatial and temporal coverage, typically providing only a 
snapshot at a specific time in a year. These constraints further limit the 
ability to estimate dead zone changes across space and over time. Ocean 
satellite imagery, such as MODIS and SeaWiFS, can supplement the 
ground measurements by providing long-term and large-scale informa
tion for coastal monitoring. For example, MODIS-Aqua/L3SMI and 
MODIS-Terra/L3SMI used in this study provide daily imagery since 
2000. The SeaWiFS provides satellite ocean biology data dating back to 
1997 on a daily basis. However, to maintain consistency, we excluded 
SeaWiFS from this analysis due to its much coarser spatial resolution 
(9200 m). Future advancements in data fusion techniques could help 
integrate such datasets, enabling the generation of more consistent, 
continuous, and longer-term information to fill data gaps and improve 
our understanding of coastal processes.

In this study, using 20 years of consistent MODIS satellite imagery, 
we explored the appropriate time lags between satellite-observed sur
face seawater characteristics and the occurance of bottom-water hyp
oxia. Our analysis shows the time lag is most likely at 30–32 days on 
average. This aligns with previous estimates, such as Zhou et al. (2020), 
which identified a lag of 1–8 weeks, and Justić et al. (1993), which 
similarly suggested a maximum lag of 8 weeks. While our findings align 
with prior studies, there remains an insufficient amount of direct evi
dence to pinpoint the exact time lag between surface processes and 
bottom-water hypoxia. The time lag may vary across years due to 
changes in climate and oceanic conditions. Future studies can use more 

continuous ground-based measurements (e.g., buoys) and process-based 
models to better investigate time lag effects.

While satellite data are abundant, they are susceptible to data gaps 
caused by cloud and sun glint, and inter-orbit gaps. Like most other time- 
series analyses using remote sensing, our mapping also encountered 
missing pixel issues in our dead zone mapping (Fig. 10). Those data gaps 
might lead to an underestimation of the coastal dead zones, even though 
satellite data provide better spatial coverage than the traditional on-site 
measurements. Gap-filling using a time series that takes the composite 
median or mean is the conventional method for addressing these gaps, 
but it might not be appropriate for detecting time-sensitive changes, 
such as short-term algal dynamics or dead zone fluctuations on an 
hourly or daily scale. Further, the fluidity of water may require gap- 
filling techniques to consider the spatial dimension in addition to the 
temporal dimension. For instance, some studies have employed soap- 
film smoothing (Wood et al., 2008) and deep learning-based ap
proaches (Shao et al., 2019), which integrate both spatial and temporal 
dimensions to address data gaps. Unfortunately, these tools are either 
currently unavailable on the GEE platform or require additional satellite 
imagery not available in GEE. Future advances in these techniques and 
data fusion are expected to address the existing data gaps.

In addition to data gaps in satellite imagery that might limit dead 
zone mapping, the accuracy and representativeness of satellite-derived 
variables might also influence model accuracy. For instance, the near- 
surface concentration of chlorophyll-a, derived from remotely sensed 
reflectance, serves as a widely utilized proxy for detecting 

Fig. 6. Annual dead zone area from satellite predictions (2000–2019). Dead zone = bottom water hypoxia (< 2 mg/l of dissolved oxygen). The error bars indicate the 
standard error of predictions (n = 30 days). Because the area of dead zone changes over time within a year, we used the top 30 maximum daily dead zone predictions 
during each summertime (when dead zones typically peak) to calculate the standard error of yearly maximum dead zone predictions. The dashed horizontal red line 
denotes the target of the Gulf Hypoxia Action Plan, aiming to reduce the five-year running average size to <5000 km2. The light-gray line with dots shows the area of 
hypoxia (no data for 2016) reported by the Gulf Hypoxia Research Team (see https://gulfhypoxia.net/research/shelfwide-cruises) (Rabalais and Turner, 2019). 
Please note that the estimation by the Gulf Hypoxia Research Team was based on snapshot data of water measurement and geospatial interpolation approach, which 
are not strictly comparable to our results.
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Fig. 7. Intra-annual change of dead zone area over summer months. Dots show the estimated dead zone area each day, and darker red colors indicate larger areas of 
dead zones. Lines represent the smoothed conditional means using the local polynomial regression fitting method. The gray shades represent 95 % CIs. The dashed 
horizontal red line denotes the target (< 5000 km2) of the Gulf Hypoxia Action Plan.

Fig. 8. (A) Inter-annual dead zone occurrence (%) during 2000–2019. All of the colored regions denote dead zone occurrence (dissolved oxygen <2 mg/l). (B) 
Spatial map of DO prediction performance measured by root mean square error (RMSE; RMSE mean = 0.75, sd = 0.63).
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phytoplankton biomass in open ocean environments (Boyce et al., 2012; 
Harvey et al., 2015), but these data products include many un
certainties. Taking the chlorophyll-a product by MODIS-Aqua as an 
example, the mean absolute error (MAE) is about 1.69 mg/m3 for the 
global product (https://oceancolor.gsfc.nasa.gov/reprocessing/r2 
022/aqua/), and the MAE is about 2.38 mg/m3 for the Gulf of Mexico 
region when evaluated with in situ observation data compiled by the 
Gulf of Mexico Coastal Ocean Observing System (https://gisdata.gcoos. 
org/). Furthermore, different algae species can impact the representa
tiveness of using chlorophyll-a as the key variable for predicting dead 
zones as not all algae lead to dead zones. For instance, Sargassum is 
considered critical for protecting marine habitats and associated marine 
species while excessive cyanobacteria, dinoflagellates, coccolitho
phores, and diatoms in coastal oceans are mainly responsible for causing 
significant adverse impacts on ocean ecosystems (Campbell et al., 2019). 
Our model could not distinguish algae genera and thus might lead to an 
overestimation. Distinguishing the genera will be critical for further 

improving model accuracy and explanatory power.
Typically, current dead zone predictions rely on hypoxic area esti

mations from the LUMCON, derived from water sampling during 
midsummer cruises. We overlaid our predictions with the LUMCON 
results (Fig. 6) (Rabalais and Turner, 2019) and found that both esti
mations show similar overall trends, despite some year-to-year varia
tions. The estimations of dead zone areas by LUMCON were largely 
based on snapshot data of water measurements and geospatial interpo
lation approaches, which are not strictly comparable to our results. The 
LUMCON cruise sampling dates were primarily in late July, with some 
data collected in May and June during the study period from 2000 to 
2019. Consequently, it is possible that the measurements missed the 
timing for capturing important water quality change information. It is 
therefore important that we integrate discrete ground measurements 
with continuous satellite observations to construct models and charac
terize the relationships, enhancing our comprehension of the spatio- 
temporal dynamics of coastal dead zones. While our satellite-based 

Fig. 9. The intra-annual dead zone occurrence (A), and the size of the area with over 60 % occurrence each summer (B). All the colored regions in A denote dead 
zone occurrence (dissolved oxygen <2 mg/l).
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modeling provides valuable reference information for understanding 
spatiotemporal patterns, it has limitations in capturing the underlying 
mechanisms driving hypoxic changes. Similarly, field observations, 
though critical for validation, are spatially and temporally constrained. 
These challenges underscore the need for continued advancements in 
validation approaches, including the incorporation of additional in situ 
data sources and autonomous monitoring systems to improve model 
accuracy and reliability.

4.2. Important satellite predictors for dead zone mapping

Our analysis identified that sea surface temperatures, satellite 
reflectance at band 678 nm (i.e., the chlorophyll fluorescence emission 
spectrum), longitude, and chlorophyll-a concentration are the most 
important predictors in the RFR model (Fig. 4B). This partly aligns with 
previous studies that demonstrated that phytoplankton events (or their 
equivalent net primary productivity) and climate warming are two 
important explanatory variables in hypoxia prediction models (Kim 
et al., 2020; Le et al., 2016).

Climate warming has become the dominant factor causing phyto
plankton events and deoxygenation in both lakes and coasts (Ho et al., 
2019; Jane et al., 2021; Kim et al., 2020) as seawater warming can not 
only facilitate phytoplankton events, water stratification and oxygen 
solubility (Dagg and Breed, 2003; Rabalais et al., 2009), but also 
disproportionately increases respiration rates of heterotrophic organ
isms compared to oxygen production by primary producers.

In the Gulf, the increase of algae often aligns with the temperature 
rise (Fig. S7A). Chlorophyll-a concentration and chlorophyll fluores
cence (i.e., band 678 nm used in this study) both have been widely used 
as the proxies of phytoplankton events (Jane et al., 2021; Scavia et al., 
2017; Shen et al., 2019). Chlorophyll-a, specifically, is the primary type 
of chlorophyll present in green plants and algae, serving as an indicator 
to measure the abundance of phytoplankton in water bodies. Remote 
sensing reflectance at band 678 nm is often used for measuring 
normalized fluorescence line height (nflh) – a crucial indicator of the 
physiological status of phytoplankton (Behrenfeld et al., 2009), and it is 
also used in the Red Band Difference algorithms for detecting phyto
plankton events (El-habashi et al., 2016). However, it is important to 

note that the nflh product has limitations and may be inaccurate in 
coastal waters, particularly in river-influenced areas where scattering is 
increased by the presence of non-algal particles (Bianchi et al., 2010; 
Gilerson et al., 2007; Walker and Rabalais, 2006). As algae exhibit a 
short life span, their growth and subsequent decay introduce substantial 
organic matter into the bottom water. The decomposition process by 
bacteria can, in turn, result in the depletion of oxygen (Fig. S1). This 
mechanism is supported by our findings, which show that proxies of 
phytoplankton events were important for modeling hypoxia.

Furthermore, heterotrophic respiration in both pelagic and benthic 
domains also plays a critical part in oxygen depletion. Elevated tem
peratures accelerate metabolic processes, leading to heightened bacte
rial degradation of organic matter and increased sediment oxygen 
consumption (Henson et al., 2013; Kim et al., 2023; Vázquez-Domínguez 
et al., 2007). Additionally, the imbalance between photosynthesis and 
respiration becomes more pronounced under warming, as heterotrophic 
processes are generally more temperature-sensitive than autotrophic 
ones. This imbalance, coupled with higher grazing rates by zooplankton, 
intensifies top-down control on phytoplankton biomass, further shifting 
the balance toward oxygen depletion (Kralj et al., 2019; O’Connor et al., 
2009).

Water stratification due to warming makes dead zones worse by 
preventing water mixing that oxygenates water at lower depths 
(Fig. S1). The three water stratification-related variables – temperature 
difference between surface and bottom, salinity, and velocity – are also 
among the top twelve most important predictors (Fig. 4B). Other po
tential factors such as water residence time and circulation also signif
icantly influence oxygen dynamics. Prolonged residence time and 
reduced circulation enhance stratification, limiting oxygen replenish
ment in bottom waters and compounding the effects of eutrophication. 
Future studies can further incorporate process-based models to provide a 
more comprehensive understanding of the mechanisms driving hypoxia, 
particularly in the context of a warming climate.

We did not include nutrient concentration or load as predictors in our 
model for two reasons: (1) the lack of spatial information on nutrient 
concentration in the coastal water; (2) there exists a strong lagged cor
relation (r = 0.60 ± 0.15, p < 0.001) between nutrient loads to the Gulf 
and the chlorophyll-a levels (Fig. S7B) (Walker and Rabalais, 2006), but 

Fig. 10. Predicted dissolved oxygen (DO) levels in bottom waters and associated missing pixel issues. (A) Modeled DO map for July 30, 2009. (B) Modeled DO map 
for July 30, 2019. Pixels with DO levels below 2 mg/l are categorized as dead zones.
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the latter is a more direct driver of coastal water hypoxia and has spatial 
information from the satellite.

4.3. Knowledge gap in long-term global studies on dead zones and 
metacoupled land-ocean systems

In addition to the Gulf of Mexico, the UNEP, and the Intergovern
mental Oceanographic Commission have identified 65 large marine 
coastal ecosystems across the globe that experienced similar human and 
natural stressors. Degradation of these ecosystems may result in inter
connected and cumulative environmental effects, posing severe conse
quences on human well-being (UNEP-DHI and UNEP, 2016). To address 
these widespread challenges, there is an urgent need for long-term, 
global-scale, and consistent coastal monitoring efforts. Our model is a 
reproducible approach, employing freely available remotely sensed data 
and open-source algorithms on the GEE cloud computing platform, and 
can be adapted for use in other coastal ecosystems worldwide.

Our study also provides a foundation for using system thinking ap
proaches when examining the linkages between large river basins and 
the adjacent coastal ecosystems (Best, 2019; Breitburg et al., 2018), 
especially the ones that have undergone severe impacts of dead zones (e. 
g., the East China Sea, the Black Sea, and the Gulf of Oman). While our 
approach is not explicitly designed to guide decision-making toward 
achieving the 5000 km2 reduction target, it offers valuable insights for 
understanding hypoxia dynamics, informing processes, and exploring 
potential solutions. Coastal eutrophication leading to harmful dead 
zones is primarily driven by human pollution from terrestrial ecosys
tems, particularly agricultural activities such as fertilizer application 
and animal manure management. The metacoupling framework, which 
examines socio-environmental interactions within as well as between 
adjacent and distant systems, provides a valuable approach for linking 
nutrient contributions from regions within a watershed to hypoxia issues 
in distant coastal areas (Li et al., 2023a; Liu, 2023). Understanding these 
connections can improve insights into the timing and magnitude of 
nutrient delivery to coastal areas, facilitating the development of inte
grated policies and strategies to address nutrient reduction and mitigate 
coastal dead zones effectively.

Projections indicate that climate change and the expanding global 
population will amplify the spatial extent, duration, and intensity of 
global dead zones (Fennel and Testa, 2019; IOC-UNESCO and UNEP, 
2016; Sinha et al., 2017). Improving the understanding of both historical 
and future dead zone dynamics under climate change is urgently needed 
to support early conservation efforts (Domínguez-Tejo et al., 2016; 
Ménesguen and Lacroix, 2018) and to advance progress toward the 
United Nations Sustainable Development Goals (SDGs)—particularly 
SDG 14, which focuses on the sustainable management and protection of 
marine and coastal ecosystems. Policy strategies like the Gulf Hypoxia 
Task Force could be one of the promising means of intervention to 
reduce fertilizer runoff and alleviate the dead zone consequences, 
however, their success depends on routine monitoring of both dead zone 
dynamics and policy effectiveness. Our study demonstrated that remote 
sensing could help track the spatiotemporal variation of large-scale 
coastal systems in combination with traditional in-situ field measure
ments. Future studies can leverage the methodology we developed for 
the Gulf of Mexico to expand our model to other regions. This will enable 
the prediction of future trends of coastal dead zones across space and 
time, enhancing insights for more informed coastal ecosystem assess
ments and management.
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