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The Russia-Ukraine war reduced food
production and exports with a disparate
geographical impact worldwide

Check for updates
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Mengting Wang7, Ruishan Chen3 & Jianguo Liu 1

The transboundary impacts of regional war on global food trade remain underexplored, particularly
regarding disruptions to production and trade networks. Here we address this gap by developing a
rapid assessment framework that integrates remote sensing, policy monitoring, and network analysis
to evaluate the effects of the Russia-Ukraine war on global winter cereal production and trade. Using
satellite data, we estimated yield reductions for wheat, barley, and oats and analyzed the effects of
export-ban policies enacted since February 24, 2022. Our findings indicate that lower- and middle-
income countries were disproportionately impacted, as trade networks became fragmented, forming
isolated clusters that threatened food accessibility. Geographically distant countries experienced
greater disruptions than those near the conflict. This framework provides insights into the cascading
effects of conflict on global food systems and offers a predictive tool for policymakers to address food
availability challenges during future crises.

As major producers and exporters of agricultural commodities, Russia and
Ukraine play critical roles in the global staple food supply. They exportmore
than 54%of globally tradedwheat, barley, and oats1. A number of countries,
including some with vulnerable food availability, heavily rely on imports
from these two countries. For instance, the shares of wheat imported from
Ukraine by Egypt and Lebanon are 85% and 81% of their total wheat
imports2. The war between Russia and Ukraine, which began on February
24, 2022, has raised serious concerns about Ukraine’s crop production and
global food shortages3. A series of cascading effects of thewar, such as loss of
agricultural labor, destruction of infrastructure, and limited access to agri-
cultural inputs, have threatened food production in Ukraine4–6.

Alongside high energy costs and supply-chain disruptions, the war has
further exacerbated the global rise in food prices7. International cereals’
prices increased by 20% within the first three months after the start of the
Russia-Ukrainewar8. The soaringpriceshave reduced thepurchasingpower
of food importers and caused hunger, especially in low-income countries in
Africa, the Middle East, and South America9. The Food and Agriculture
Organization (FAO) models suggested that 13 million more people would
be undernourished in 2022 due to the Russia-Ukraine war10. Furthermore,

over 20 nations, including India and Kazakhstan, have declared stringent
prohibitions and restrictions on grain exports after the Russia-Ukraine war,
worsening the global grain supply and food availability11. Quantifying such
cross-border impacts is therefore necessary for assessing food availability
and making timely responses.

Recent studies have aimed to explore the quantitative impact of the
Russia-Ukraine war on global food trade and food availability. Established
studies have assessed the direct, indirect, and cascading effects of the Russia-
Ukraine war by measuring the resilience, dependence, availability, and
stability of other countries12. Steinbach used product-level empirical mod-
eling to identify reductions in Ukrainian exports and substantial trade
diversions in Russia’s favor13. Some studies similarly emphasized the
increase in global agricultural import prices, quantifying the impact of
the war on food prices, trade volumes, and security14,15. Some studies have
examined the impact ofwar on trade and supply chains. For example, Arndt
et al. used a global trade model to assess the impact of the Russia-Ukraine
war on developing food supply chains16. The study emphasized the
importance of diversifying sources of food supply. The study by Zhou et al.
examined the economic impact of the war on agricultural markets,
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highlighting trade disruptions and food price increases17. Structural general
equilibrium trade models have been used to illustrate how a reduction in
Ukraine’s wheat production would affect global food security15. Van Meijl
et al. assessed the impacts of the conflict on global grain markets and food
security18. The study reveals severe supply disruptions and price increases
and argues for policy interventions to stabilize markets. However, these
studies still fail to integrate rapid export ban policy data into exploring the
impactof thewaroncountrieswithdifferent income levels, and it is not clear
whether the impacts vary among countries at different spatial distances.
This knowledge gapmay result in some of themost affected countries being
overlooked.

Also, some studies attempted to examine changes in food production
in Ukraine and the war’s transboundary effects but are based on qualitative
analysis or untestedquantitative analyses5,7,19.While existing studies provide
valuable insights into the economic impacts of the Russia-Ukraine war on
grain-importing countries, a complementary approach is needed to con-
ceptualize the trading system as a dynamic, interconnectednetwork (Fig. 1).
This allows us to assess the structural changes within global trade rela-
tionships and explore the resilience of the global trade network in response
to external shocks.Collecting grounddata in conflict zones is dangerous and
challenging. Previous studies have demonstrated the efficacy of remote
sensing in assessing the socioeconomic andenvironmental impacts ofwar in
countries such asUganda, Iraq, Syria, South Sudan, andYemen20–26.While a
few studies have applied remote sensing tomonitor agricultural production
in Ukraine, they lack systematicity and often focus on specific aspects such
as changes in land cover or yields of a single crop15,27. Furthermore, the
impact of the Russia-Ukraine war on food availability in countries at dif-
ferent distances remains underexplored. To summarize, the impact of the
Russia-Ukraine war on adjacent and distant national food systems in dif-
ferent income levels is not well understood in a metacoupled world (e.g.,
socioeconomic-environmental interactions within and across national
borders)28,29.

Considering the above gaps, we developed a rapid quantitative pre-
dicting framework integrating remote sensing and export ban policies with
network analysis to build a trade network simulation. The simulation aims
to assess the impact of the Russia-Ukraine war on food production in
Ukraine. Since winter crops inUkraine are dominated by canola and cereal,
we used climatic algorithms to differentiate the acreage of winter cereals

(wheat, barley, and oats) by analyzing seasonal growth differences using the
widely used radar satellite images, Sentinel-130. Themethod is still limitedby
some of the inherent shortcomings of remotely sensed imagery. For
example, the spatial and temporal resolutions of the Sentinel-1 data are not
suitable enough for accurately distinguishing morphological changes in
crop plots at small scales over short periods of time30. While other satellite-
based sensorswithhigher spatial resolution ground sampling distances and/
or daily revisitsmay be better suited to detecting such changes, these options
currently require the use of commercial solutions,which can increase survey
costs. Considering several advantages, such as not being limited by weather,
and timing of visits (which may be obscured by cloud cover in fall and
winter), low cost (compared to commercial solutions), and secure access
(despite the ongoing war in the study area), the Sentinel-1 is a useful source
of data for the monitoring effort. Subsequently, we generated a 10-m
resolution map of annual winter cereal farmland extents at the state level
within Ukraine. After obtaining a spatial distributionmap of annual winter
cereals,we estimated thewinter cereal yieldusing a randomforest regression
model, with model inputs such as the normalized difference vegetation
index (NDVI), climate variables, and reference crop yield statistics. Given
that staple crops affect food availability, we focused on three major staple
crops in Ukraine—wheat, barley, and oats—to assess changes in food
production. The planting area and yields of the three cereals account for
more than 80% of all cereals31.

The complex and interdependent nature of the global food system
underscores the imperative for a rigorous and comprehensive approach to
quantifying the effects of the armed conflict12. Network analysis is amethod
of studying the relationships between the nodes in a network and under-
standing how the network functions as a whole. It has been widely used for
systematic analysis in sociology, medicine, sustainable development, and
ecosystems32–37. Network analysis allows us to understand how changes in
one part of the system can ripple through the entire network, affecting
everything from production to distribution to consumption. Additionally,
network analysis enables us to identifywhich countries and regions aremost
vulnerable to global food-system disruptions and target interventions in
those areas38. Overall, network analysis is a valuable tool for understanding
the complex dynamics of the global food system39 and developing effective
strategies to enhance its resilience and sustainability. Here we constructed a
correlation network inwhich a network node is a country in the global trade

Fig. 1 | Cascading mechanism by which war affects the global winter cereal
network by decreasing production and prompting other exporting countries to
publish export policies. a is the shock of the Russia-Ukraine war on the volume of
food trade exports, while b shows the resilience of the trading system, mitigating the
shock through price changes. The gray arrows refer to the quantified impacts

covered in this paper. The black dashed arrows are the potential impacts discussed in
the qualitative aspects of this paper. The blue arrows in b refer to negative impacts on
price, i.e., when potential exporters export in large quantities, which reduces cereal
prices; the red arrows refer to positive impacts on price, i.e., when import demand
increases or there is a shortfall in export volumes, which raises cereal prices.
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systems of wheat, barley, and oats, and the strength of each link is the trade
quantity between countries. Thus, we built export networks for the three
crop trade systems.

Here, we utilized rapid policy data and remotely sensed data in con-
junction with trade network analysis and used simulations to gain a com-
prehensive understanding of global winter cereal trade dynamics affected by
the Russia-Ukraine war. Specifically, we aimed to address the following
questions:
(1) What is the status of reductions in the production of winter cereal

(wheat, barley, and oats) in Ukraine?
(2) How have the structures and interdependencies of the global trade

networks of winter cereals changed in the simulated 2022 trade net-
work compared to 2021, taking into account the reduction in winter
cereal production in Ukraine as well as the export bans on wheat,
barley, and oats in other countries?

(3) How does the war affect countries at different income levels and across
distances? Are countries farther from the exporting countries affected
differently compared to those near the exporting countries?

Results
Winter crop production reduction observed from satellite
Basedon the state-level official statistical data,we evaluated theperformance
of ourmethod at the state level for identifyingwinter cereals. Supplementary
Fig. 1 shows the mapping results of the validation for 2019 to 2021. The R2

values between the satellite-derived area and the official statistical data
ranged from 0.80 to 0.94 for 26 states. Meanwhile, the root mean square
error (RMSE) ranged from 55.94 km2 to 116.11 km2. Overall, there is good
correspondence between official statistical data and identified planted areas.
In addition, our state-level yield estimation results compared well against
official statistics, with an RMSE of 346 kg/ha and an R2 of 0.7040,41. The
prediction errors can arise due to the inherent noise in historical data,
inaccuracies in model assumptions, or the unpredictability of future con-
ditions not captured in historical observations42–44. To account for these
uncertainties, we have calculated a 95% confidence interval, depicted in
Supplementary Fig. 1. This interval reflects our best estimate of the expected
range of predicted values, accounting for possible variations inherent in our
modeling framework.

The monitoring results of remote sensing satellites and official
statistical data show that the winter crop was mainly distributed in the
central and southern parts of Ukraine in 2022 (Fig. 2b). After the war’s
outbreak, winter crops’ main production areas shifted from Odessa,
Zaporizhzhya, and Mykolayiv states to Zaporizhzhya, Dnipropetrovs’k,
and Kherson states. Meanwhile, war in the eastern region threatened the
crops in the war-affected areas and affected the growth and development
of winter crops in the entire region (NDVI < 0). From theNDVI changes
in the longitude (Fig. 2a) and latitude (Fig. 2c) directions, the NDVI
values in the central part of the study area were higher than those in the
surrounding areas, and the winter crop yields were higher. The yield
estimation results (Fig. 2d–g) show that the war threatened agricultural
production and food availability in Ukraine. If war losses are not con-
sidered, compared to 2021, winter crop yield reduced by 5.42 million
tons (95% CI range: (−0.05, 10.88)) in Ukraine, including 4.72 million
tons (95%CI range: (−0.22, 9.67)) of winter wheat and 0.86 million tons
(95%CI range: (−0.43, 2.15)) of winter barley. But, if we consider 30% of
war losses, compared to 2021, winter crop yield would be reduced by
15.04 million tons (95% CI range: (8.68, 21.40)), including 12.89 million
tons (95% CI range: (7.72, 18.05)) of winter wheat, 2.09 million tons
(95% CI range: (0.29, 3.89)) of winter barley, and 0.07 million tons (95%
CI range: (0.02, 0.12)) of winter oats15. As themain battlefields of the war,
the food-producing croplands of the states near the eastern and southern
parts of Ukraine have been affected. The total yields of winter cereal in
Odessa, Donets’k, Kharkiv, Zaporizhzhya, and Mykolayiv states
decreased by over 7.68million tons. This decline was also observed in the
total yield of winter wheat within these states, with a decrease exceeding
6.29 million tons. Similarly, the total yield of winter barley exhibited a

reduction, surpassing 1.38 million tons, particularly in Odessa, Zapor-
izhzhya, Mykolayiv, and Kherson states. In addition, the yield of winter
oats also decreased.

Winter cereal trade networks in 2021
We visualized the global trade networks for wheat, barley, and oats in 2021
(Fig. 3a–c, three letters represent abbreviations of country names; for spe-
cific names of countries, see Supplementary Table 1). Ukraine is one of the
major exporters in the world’s network of wheat, along with the USA,
Russia, Canada, Australia, and France. These major exporting countries
have very different structures of cooperation partners. For example, the
United States, Russia, and Canada export mainly to countries with upper-
middle-income levels. The United States exports mainly to Mexico, the
Philippines, China, Japan, Korea, Colombia, and Thailand. Russia exports
mainly to Turkey, Egypt, Azerbaijan, Kazakhstan, Nigeria, Bangladesh, and
Thailand. In contrast, Canada exports mainly to China, Japan, Indonesia,
Peru, Colombia, and France’s main partners are mostly high-income
countries. Australia and Ukraine are the main exporters to lower-middle-
income countries. Among them, Ukraine is the only one of these major
exporters in the lower-income (lower-middle-income and low-income)
level category. It mainly exports to countries with lower-middle-income
levels, such as Egypt, Indonesia, Pakistan, Morocco, Bangladesh, and the
Philippines, and low-income countries, such as Ethiopia, Yemen, Mozam-
bique, Madagascar, and Indonesia. A number of countries with upper-
middle-income or high-income are themajorwheat-importing countries in
this trade network: China, Turkey, Italy, and Brazil. The reasons for this are
closely related to these countries’ population sizes, cultivated patterns, and
dietary habits.

In the global trade network for barley, the top exporters are very similar
to those for wheat and include Australia, Ukraine, Russia, France, Canada,
Argentina, andGermany.Ukraine remains themain exporting countrywith
the lowest overall income level among them, and it exports large quantities
of barley to China, Turkey, Saudi Arabia, Libya, Tunisia, and other coun-
tries. In this trade network, China, Saudi Arabia, Netherlands, Turkey, and
Belgium are the most important importers of barley. In the global trade
network of oats, Canada’s export to the United States is the largest trade
flow, making Canada and the United States the largest oats exporter and
importer in the world, respectively. Australia, Poland, Russia, and Sweden
are also major exporters, while the USA, Germany, China, Netherlands,
Belgium, and Spain are the main importers of oats.

In summary, Ukraine is one of the leading exporters of winter grains,
with the highest total exports of wheat and barley, and trades mainly with
lower- and upper-middle-income countries. As the only lower-middle-
income exporting country, the Ukrainian population may be having diffi-
culty affording its own grain production investments during thewar, and its
reduced production may impact food availability for populations in more
vulnerable middle-income countries.

Affected winter cereal trade networks
The winter cereals (wheat, barley, and oats) for 2021–2022 are used as an
example to visualize the predicted dynamics in each country in the trade
networks under war effects. We simulated and analyzed the 2022 trade
networks based on the fact that Ukraine’s reduced production led to a drop
in exports to other countries and a ban on exports by other countries.

The validation results, shown in Supplementary Fig. 3, demonstrate a
strong correlation between the simulated 2022 trade networks and actual
trade data for wheat, barley, oats, and total winter cereals. Although some
variations exist, particularly for lower-middle- and low-income countries,
where greater deviations in trade quantities are observed due to higher
vulnerability to market shocks, the overall distribution patterns remain
consistent across income levels. The regression analysis further supports the
reliability of the simulation. TheR² value of totalwinter cereals is 0.72, theR²
value of wheat is 0.76, theR² value of barley is 0.73 while theR² value of oats
is 0.59. The validation results indicate that our simulation effectively cap-
tures the general trends in global trade volumes.
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Fig. 2 | Satellite observations reveal that winter crop yield in Ukraine decreased
in 2022. aNDVI change in longitude direction; the x-axis is the pixel number while
the y-axis is the sum of total NDVI change value. b Schematic diagram of NDVI and
war areas. cNDVI change in latitude direction.dThe reduction inwinter wheat yield
in each state. e The reduction of winter barley yield in each state. f The reduction of

winter oats yield in each state. gThe reduction ofwinter crop yields in each state. Due
to Russia’s control, crop yields in the Crimea and Sevastopol regions were not
considered in this study; the y-axis is the pixel number, while the x-axis is the sum of
the total NDVI change value.
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Based on the simulation results, we analyzed the percentage impact of
each country in the three winter cereal trade networks for the
2021–2022 season. The visualizations (Fig. 4; for specific decreasing rates,
see SupplementaryTable 2) reveal that countries inAfrica andAsiawere the
most affected, with reductions in imports ranging from 75% to 100%.
Specifically, countries such as Guinea-Bissau, Sierra Leone, the Democratic
Republic of Congo, Somalia, and Eritrea in Africa, as well as Montenegro,
Albania, the former Yugoslav Republic of Macedonia, and Belarus in Eur-
ope, were among the most heavily impacted. Additionally, the European
countriesMacedonia and Belaruswere expected to experience reductions in
imports, while in Asia, affected countries included Turkey, the Syrian Arab
Republic, Georgia, Armenia, Azerbaijan, Kazakhstan, Uzbekistan, Kyrgyz-
stan,Mongolia,Nepal, andBhutan.Anoteworthyobservation is that among

the countries most heavily impacted by the reductions in winter cereal
exports, only Antigua and Barbuda belongs to the high-income group. Six
affected countries are classified as low-income, seven as lower-middle-
income, and eight as higher-middle-income. The disparities in the impacts
of the export reductions between high-income and low-income countries
underline the importance of targeted policies and programs to support
vulnerable populations during times of conflict. By recognizing and
addressing different groups’ unique needs and challenges, we can work
toward building more resilient and equitable societies.

Nine countries in the highly impacted category (more than 50%) are
classified as lower-middle-income: Egypt, Bangladesh, Senegal, Pakistan,
Lebanon, Congo, Cameroon, Benin, and the United Republic of Tanzania.
Five countries at the low-income level and nine lower-middle-income

Fig. 3 | Global trade flows (top 25%) of winter cereals among income groups
in 2021. (for trade flows among all countries, see Supplementary Fig. 2). Networks
for winter cereals—wheat (a), barley (b), and oats (c)—are classified by income
levels. Trade flows are depicted using chord diagrams, with the direction and volume
of trade represented by the connecting bands between countries. The color coding

distinguishes the income levels of countries, with high-income countries in red,
upper-middle-income countries in yellow, lower-middle-income countries in blue,
and low-income countries in green. Thicker bands indicate higher volumes of trade
between the respective countries.
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countrieswere highly impacted, alongwith four upper-middle-income level
countries and five high-income countries. In the countries less impacted
(25%–50% reduction in imports), most are in the high-income category,
which indicates that high-income countries are more resilient and have a
greater diversity of import providers.

Based on remotely sensed yield estimates and information on
export ban policies, we simulated the winter cereals trade networks of
2022 to reflect the effects of these conditions (Fig. 5). We considered the
global trade networks to remain consistent with 2021 in terms of export
volumes and trade parties, except for the impacts of reduced production
and policy measures. To analyze these changes, we employed network
analysis tomodel the trade network dynamics, focusing on keymetrics—
connectance, evenness, andmodularity—to capture the war’s impact on
the global food trade system. The 2021 networkwas built using data from
the UN Comtrade database, which provides detailed trade statistics. For
2022, we simulated the network by integrating remote sensing–based
yield forecasts and export policy data. We maintained the 2021 ratio of
Ukraine’s exports to its production, projecting the total exports for 2022,
and allocated exports proportionally to countries. For those countries
with export bans, trade was assumed to cease, allowing us to construct
simulated 2022 trade networks reflecting the expected shifts. According
to the simulated results, the most affected importers in the wheat trade
network were mainly Turkey at the upper-middle-income level, Egypt,
Bangladesh, Indonesia, and Nigeria at the lower-middle-income level,
and Yemen at the low-income level. Overall, the most affected group of
countries was the upper-middle-income countries, which were expected

to lose more than 46.58 million tons of wheat imports, followed by the
lower-middle-income countries, which would see a reduction of 38.92
million tons of imports compared to 2021 imports. The low-income
countries were estimated to face a shortfall of 25.59 million tons of grain
imports, while high-income countries were the least affected, facing only
20 million tons of import reduction.

For the worldwide barley trade network, reducing production in
Ukraine and national trade protectionism in Russia were the most influ-
encing factors. Turkey, China, and Libya at the upper-middle-income level,
Tunisia at the lower-middle-income level, and Saudi Arabia at the high-
income level are the most affected countries. In the oats trade network,
despite the ban on oats exports published by Hungary, Kyrgyzstan, Kuwait,
and Turkey, the reduction in production in Ukraine still had the most
impactful role due to the volume of trade. The most affected countries were
India and Pakistan at the lower-middle-income level, Libya, Serbia, Bosnia
Herzegovina at the upper-middle-income level, and Hungary, Switzerland,
and Germany at the high-income level.

Production reduction in Ukraine and the introduction of protec-
tionist bans on the trade of winter cereals in various countries as a result
of the Russia-Ukraine war have reduced the connectance of the global
trade networks for the three cereals, with the wheat trade network being
the most affected (Fig. 6). The modularity of the three networks has also
increased, which illustrates the impact of the war on the network,
causing elevated national protectionism and reduced trade between
countries. Specifically, in 2021, wheat, barley, and oats trade networks
displayed high connectance and global integration, signifying

Fig. 4 | Percentage reductions in projected imports in 2022 for each country. a Absolute value and rate of change of total import volume by country from 2021 to 2022;
contents of b–f are the shares of countries with different income levels in different affected percentage intervals.
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well-established supply chains. In 2022, the geopolitical disruptions due
to the Russia-Ukraine war caused disruptions manifested as a pro-
nounced fragmentation in the trade networks of all three cereals, leading
to smaller, regionally concentrated clusters.

For wheat, the trade network’s fragmentation was particularly evident
(Fig. 6a1, a2). In 2021, the dense connections between countries reflected a
high level of global trade, corroborating findings by the FAO that highlight
the importance of Ukraine and Russia as wheat exporters45. However, the
2022 data indicate a decline in connectivity, signaling the urgent search for
alternative suppliers due to Ukraine’s diminished production and export
restrictions by other nations. This shift resulted in isolated regional clusters,
showing a decline in global trade interconnectedness.

Similarly, the barleynetwork faced reorganization (Fig. 6b1, b2).Asper
the International Grains Council (2022)46, Ukraine was one of the world’s
leading barley exporters, and the decrease in its production due to conflict
had cascading effects. The 2022 network reflects fewer trade connections,
and regional clusters emphasize countries relying more on local or nearby
suppliers.

The oats network, comparatively smaller and less globally connected,
also underwent a noticeable shift (Fig. 6c1, c2). While its 2021 network
showed less connectivity than wheat or barley, the 2022 data further high-
light fragmentation, emphasizing regional clustersmore pronouncedly. The
shift to localized trade reflects broader trends observed in supply-chain
research during crises47.

Fig. 5 | Trade networks affected by production cuts in Ukraine and external
cereals export bans in 2022 (top 25%). (for trade flows among all countries, see
Supplementary Fig. 4). Global trade networks for winter cereals—wheat (a), barley
(b), and oats (c)—across various countries are classified by income levels. Trade
flows are depicted using chord diagrams, with the direction and volume of trade

represented by the connecting bands between countries. The color coding distin-
guishes the income levels of countries, with high-income countries in red, upper-
middle-income countries in yellow, lower-middle-income countries in blue, and
low-income countries in green. Thicker bands indicate higher volumes of trade
between the respective countries.
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Our results indicate that war reduces the homogeneity of wheat and
barley trade networks, suggesting that trade between countries was more
isolated than before. Interestingly, the conflict caused a slight increase in the
evenness of the oats network, whichmay be because the decrease in trade in
the oats network ismainly driven by a single country, Ukraine, thusmaking
the overall networkmore even asUkraine’s importing countries chose other
import channels.

These observations underscore the global grain trade’s vulnerability to
geopolitical events and the imperative need to diversify supply sources to
bolster resilience. As witnessed during the COVID-19 pandemic47, this
fragmentation and regionalization of trade networks, driven by geopolitical
factors, necessitate a rethink in supply-chain strategies to ensure global food
security.

War affects adjacent and distant countries differently
Generally speaking, in a metacoupled world, war or other shocking events
can have internal, peripheral, and distant effects. The impact on adjacent
countries due to local wars is often referred to as a pericoupling effect, while
the impact on distant countries is a telecoupling effect48.

To quantify how the Russia-Ukraine war has differentially affected
adjacent and distant countries in the winter cereals network, we accounted
for all affected exporters and their neighboring and distant importers. We
found that, to the extent that wheat, barley, and oats were affected, the war
had amuch greater impact on distant countries than on adjacent countries,
which means a larger trade difference (see Table 1).

Wheat exports to distant countries curtailed a total of 189,658.72 tons
in 2022,while exports to adjacent countries shrankbyonly 50,334.19 tons.A
similar phenomenon was observed for barley, where imports in distant
countries shrank by 6000.82 tons, while imports in adjacent countries
shrank by only 431.21 tons. In the least affected oats trade network, the
distant importing countries experienced a total reduction of 1.91 tons, while
the adjacent countries had a total reduction of 0.36 tons.

Ukraine and other exporting countries had different levels of
impact on distant and adjacent places (Fig. 7). Ukraine showed a clear
tendency to have a higher degree of influence on distant places in all
trade networks of wheat, barley, and oats, while other exporters showed a
tendency to have a higher degree of influence on distant places in wheat

Fig. 6 | Effect of war on the network structure of
winter cereals. For 2021 and 2022, respectively, a1,
a2 indicate the wheat network, b1, b2 indicate the
barley network, and c1, c2 indicate the oats network.
These figures show the effects of the Russia-Ukraine
war on (i) connectance, (ii) modularity, and (iii)
evenness in different years. Each colored connecting
piece in the figure represents a small trade group
with strong trade links. The connectance values
exceed the typical [0,1] interval because they are
derived from trade volumes, which measure the
strength and economic impact of trade connections.
This method allows us to capture the intensity of
trade flows, offering a more detailed understanding
of the network’s structure and the potential impact
of disruptions on global food security.

Table 1 | Trade quantity differences between adjacent and
distant countries of Ukraine and other countries (Unit: ton)
from 2021 to 2022

Country Type Wheat Barley Oats

Ukraine Distant 7828.89 2252.23 1.75

Adjacent 41.82 0.19 0.19

Other countries Distant 181,829.83 3748.59 0.16

Adjacent 50,292.37 431.02 0.17

Note: The values in the table are the sums of differences in the countries trade with adjacent and
distant countries.
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and barley networks. In the trade networks of other countries’ exports of
oats, there is no significant difference in the degree of influence between
distant and adjacent partners.

Discussion
To quantify the impact of war on winter crop production in Ukraine, we
used remote sensing algorithms tomap the distribution of winter cereal and
predict the production of winter cereals49. Considering 30% of war losses,
results indicate that compared to 2021, winter crop production in Ukraine
decreased by 15.04million tons (95%CI range: (8.68, 21.40)), with themain
war zones in the eastern and southern regions severely affected,which shows
production distribution trends similar to the research findings of Jagtap
et al., Deininger et al., and Lin et al. However, the resolution in our study is
30-m, which is much higher than in other studies4,15,19. It indicates that our
results had amore accurate estimation of the specific amount of production
decrease. As a net exporter of grain, Ukraine has always been an important
granary for Europe and even the world50,51. The ongoing war has directly
damaged arable land and agricultural infrastructure, leading to direct losses
of crops in the war zones and difficulties in cultivating some arable land2,6,52.
Ukraine’s lost production of three winter cereals in 2021 could havemet the
caloric needs of 76 million adults for a year53,54. At the same time, the war
brought huge labor losses, with at least 6.5 million refugees from Ukraine
recorded globally, leading to a shortage of agricultural labor and the aban-
donment of arable land12,55. The ongoing Russia-Ukraine war has impacted
Ukraine’s winter crop production, as the war disrupted key stages of
farmlandmanagement such as fertilization and irrigation, leading to a large
reduction in grain production4,15. This reduction could exacerbate an
already precarious global food supply, particularly given the potential for
further disruption caused by extended heatwaves in the northern hemi-
sphere in 2022 and the sanctions imposed onRussia. Thewar has also led to
a surge in global fertilizer and energyprices,whichhas createddisruptions in
the fertilizer market and reduced farmers’ willingness to use energy and
fertilizers, potentially leading toworldwide crop reductionand food crisis5,56.
The complex interplay between geopolitical war and global food availability
underscores the need for proactivemeasures to address the vulnerabilities of
global food supply chains, particularly in regions that are prone to
instability or war.

Fortunately, potential remains for mitigating an impending food crisis
that could be triggered by the simulated results in this study. Notably, some
major grain-exporting countries boosted their exports to compensate for the
absence of Ukraine and other countries that have enacted trade bans from
the market57. The results of a 2023 network analysis reveal important shifts
in the global trade dynamics for wheat, barley, and oats following the dis-
ruptions caused by the Russia-Ukraine war and export bans in 2022

(Supplementary Fig. 5). Several major grain-exporting countries have
stepped in tomitigate the decline inUkrainian exports, ensuring a relatively
stable global supply. Notably, the United States, Australia, Canada, and
Argentina have increased their wheat exports, helping to balance the
shortfall. As the 2023 wheat network analysis indicates, the connectance
value has increased (14871835.6793), and the evenness metric (0.8283)
suggests amorebalanceddistributionof tradeflows, reflecting the successful
redistribution of supply routes among key exporters. In the barley trade
network, countries such asAustralia, France, andGermanyhave emerged as
crucial exporters, alongsideArgentina andCanada,filling the void left by the
disruptedUkrainian supply chains. The 2023 analysis shows a connectance
value of 14549313.9751 and an evenness of 0.7727, indicating that the barley
trade system has also adapted to the disruptions, with more countries
sharing the export burden. The oats trade network has seen similar
adjustments, with Poland, Australia, and Brazil playing pivotal roles in
stabilizing the global supply chain. The 2023 network analysis highlights a
connectance of 3071156.198 and an evenness of 0.888, signifying a relatively
equal distribution of trade volumes among key exporters.

However, it is also important to note that many of the exporters
stepping in to fill these gaps are from high-income or upper-middle-
income countries. These countries are typically better equipped to respond
to sudden increases in global demand due to their established infra-
structure, robust agricultural sectors, and the ability to quickly scale pro-
duction andhave a strongmotivation to increase their export quantitywith
a rapidly increasing price. Although these countries can bridge the gap
caused by Ukraine’s absence in terms of total exports, several challenges
need to be addressed. Negative factors, such as panic surrounding food
availability and port blockades resulting from the Russia-Ukraine war,
have rapidly increased agricultural commodity prices in a short period.
Ukraine’s primary trading partners include lower-middle-income and
upper-middle-income countries, with fewer high-income and low-income
countries. Regions such as low-income European and African countries
that rely on food imports fromUkraine tomeet domestic needs face a huge
challenge because their populations cannot afford the rapidly rising food
prices. Consequently, while major exporting countries may close the
export gap, reduced affordability continues to pose a threat to global food
availability. Some countries have tried to create new cropland from forests
or other lands to increase food production, but this may further affect
environmental sustainability. Using the metacoupling framework, we
quantitatively estimated the negative impact of the Russia-Ukraine war on
the winter cereals trade and in interlinked countries worldwide28. While
reducing imports from countries adjacent to the focal system, the war also
has a much larger impact on distant importers58. This finding reveals the
urgency and need for attention to potentially vulnerable countries. In the

Fig. 7 | Comparison of the degree of impact of
Ukraine and other exporting countries on distant
and adjacent importing countries. Share of total
wheat, barley, and oats exports by geographic
proximity and exporter type. The bars represent the
proportion of winter cereal exports (wheat in light
red, barley in red, and oats in blue) to distant and
adjacent countries relative to Ukraine (UKR) and
other major exporters in 2022. “Distant UKR”
represents countries geographically distant from
Ukraine, while “Adjacent UKR” refers to neigh-
boring countries. Similarly, “Distant Other” and
“Adjacent Other” indicate non-Ukraine exporters,
categorized by their proximity to major importing
regions.
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face of these challenges, the international community needs to improve its
overall understanding of the countries affected. The regions where imports
will be most affected may not be those bordering these countries, but
rather the distant regions. Policies and subsidies for these countries, which
may be underrecognized, will be essential for achieving sustainable
development goals.

The current food crisis resulting from the Russia-Ukraine war poses
many challenges, including rapidly escalating global commodity prices,
declining affordability in less developed countries, and geopolitical tensions.
In order to achieve food availability, the international community must
focus on the seemingly localized impacts that transcend regions. We
recommend calling for a highly resilient agenda, led by international
organizations such as the FAO, that focuses on distant places of high vul-
nerability and fosters intercountry cooperation. This agenda should prior-
itize countries with low levels of development and high dependence on food
imports in order to guarantee food availability for vulnerable groups. By
working together under a harmonized and resilient framework, the inter-
national community could take decisive steps toward achieving Sustainable
Development Goal 2 and ensuring a world free from hunger for all.

It is important to note that inherent uncertainties in trade dynamics
data and satellite imagery may influence the reliability of our results.
Nationally reported export datamight contain inaccuracies due to reporting
errors or political and economic motives. Some exporters with large winter
cereals storage capacity might have increased their exports driven by
increasing prices, creating differences between the true trade network and
the simulated results (Supplementary Fig. 5). Similarly, satellite imagery,
while effective in monitoring large-scale agricultural changes, has limita-
tions in spatial and temporal resolution that might affect the accuracy of
yield estimates. The Sentinel-1 data, while offering advantages like cost-
effectiveness and all-weather imaging, still pose challenges in distinguishing
crop changes at small scales over short periods. These factors, along with
model assumptions andunpredictable future conditions, necessitate caution
when interpreting our findings. To address these uncertainties, we calcu-
lated confidence intervals for our yield predictions, reflecting possible var-
iations in our modeling framework. In addition, because the simulation
setup considers changes based on the 2021 trade system andmay ignore the
elasticity of the markets, i.e., changing prices, some exporters may increase
their exports to compensate for deficiencies. Our simulation setup may
result in simulated network exports that differ from the real market
situation.

Conclusion
In this study, we developed a comprehensive and rapid assessment frame-
work that integrates remote sensing, policy monitoring, and network ana-
lysis to quantify the impact of the Russia-Ukraine war on global food
systems. Our methodology involved using remote sensing–based algo-
rithms to extract and map winter cereal crop areas and a random forest
regressionmodel to estimate yield reductions in Ukraine.We also collected
global trade and policy data to model the impacts on the global trade
networks of wheat, barley, and oats.

Ourfindings reveal that winter cereal production inUkraine decreased
due to the conflict, with yield reductions primarily affecting regions such as
Odessa,Donetsk,Kharkiv, Zaporizhzhya, andMykolayiv. These reductions,
coupled with protectionist policies enacted by a number of exporting
nations, impacted the global trade network. The study shows that countries
with lower- andmiddle-income levelsweremore affected thanhigh-income
nations. Furthermore, countries that are geographically distant from
exporting regions experienced greater disruptions than neighboring
nations. Our analysis suggests that these changes in the trade network
structure can exacerbate food shortages in vulnerable countries.

The holistic framework developed in this study allows for a nuanced
understandingof the intricate dynamicsof the global food system in timesof
conflict, offering valuable insights into which countries are most vulnerable
to disruptions in trade. The research highlights the cascading effects of
regional conflicts on the global food system (Fig. 1), emphasizing the need

for international cooperation and targeted policies to safeguard food
availability.

Methods and materials
War-affected areas in Ukraine
There is an ongoing geopolitical dispute between Russia andUkraine59. The
main battleground of the armed conflict is primarily located in the eastern
part of Ukraine, and the conflict has spread to multiple states, including
Kherson, Luhansk, Zaporizhzhya, Mykolayiv, Donetsk, Kharkiv, Crimea,
and Sevastopol60. These states have all been impacted to varying degrees by
the war, which has directly affected agricultural production by causing crop
losses and damage to agricultural infrastructure4,6. The regions directly
affected by the war are the main agricultural states of Ukraine. The winter
production of wheat, barley, and oats accounted for 30% of the total pro-
duction of these three crops in Ukraine in 2021. Among them, the pro-
duction of winter wheat was 42.08% of the total production inUkraine, and
barley production was 41.32% of the total winter cereals production.When
thesemajor agricultural stateswere hit by thewar, their reduced production
mayhave had a ripple effect. In addition to the yield losses causedby thewar,
in other regions ofUkraine, panicmay also have caused yield reductions due
to the untimely management of farmland.

Materials
Satellite data and processing. We collected Sentinel-2 and Sentinel-1
images from 2019 to 2022 as the main model input (Fig. 8). These data
were produced by the European Space Agency (ESA) and are freely
available on the Google Earth Engine (GEE) platform. Sentinel-1 images
were acquired in Interferometric Wideswath mode, which provides a
dual polarization (vertical-horizontal [VH] and vertical-vertical [VV]) at
10-m spatial resolution. The Sentinel-1 images on the GEE platformwere
processed using the Sentinel-1 SNAP7 Toolbox to generate Ground
Range Detected images61. Sentinel-2 satellites provide optical images in
13 spectral bands at 10-m, 20-m, and 60-m spatial resolutions. We used
the atmospherically corrected Sentinel-2 surface reflectance product and
eliminated the cloud-covered pixels via the Sentinel-2 cloud probability
dataset. Then, the red and near-infrared bands from Sentinel-2 images
were used to derive the NDVI time series characterizing crop phenology.

Agricultural map and official statistical data. The cropland distribu-
tion datawere derived from the 10-m global land-covermap produced by
ESA62. In addition, the RapeseedMap10 dataset with a spatial resolution
of 10 m was used to assist in the extraction of the annual spatial dis-
tribution of rapeseed planting areas in Ukraine63. However, the dataset
lacks spatial information onwinter rapeseed after 2019.We obtained data
on planted areas and yield statistics for winter crops (wheat, barley, rye,
and rapeseed) at the state level between 2019 and 2021 from the State
Statistics Committee of Ukraine. These data were used to train yield
models and to validate the derived winter cereal maps and yield forecasts.

Meteorological data. Temperature and precipitation data were utilized
as important inputs to the yield model to explore the relationship
between climate and yield64. The temperature data were derived from the
remotely sensed thermal product (MYD11A2.006) from the Aqua
MODIS sensor at 1-km resolution. The precipitation data were acquired
from the CHIRPS dataset, corresponding to a resolution of 0.05 × 0.05
degrees65.

Trade data. The overall global trade data were collected from the United
Nations Commodity Trade Statistics Database (UN Comtrade database,
see “Data availability” section), which is the original and probably the
most widely used data source to support physical trade analysis from
2020 to 2021. Comtrade has been considered a reliable source of data by
previous studies for purposes such as establishing trade networks,
building trade-related databases, and conducting logistics analysis. Since
the primary source of Comtrade data is the country itself as a reporter,
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there may be political motivations to keep information confidential and
cause errors. Previous studies have indicated that UN Comtrade data
have three main quality issues: outliers, missing values, and bilateral
asymmetries. We compared imports and exports for the crops we used
and found that both were missing data, with imports missing 15.27%
more than exports. Thus, we believe the export volume data can better
reflect the country’s agricultural trade66. Global wheat, barley, and oats
trade data were collected for 2020–2021. We also fitted the export and
import data (as shown in Supplementary Fig. 6 and Supplementary
Table 3) and found that they are similar, and all of their p-values are less
than 0.05, which indicates the results obtained by using the export data
are reliable.

We planned to introduce some pre-hints to predict the impacts of war
on global food trade, thus we collected export restriction acts through
tracking websites that had monitored relevant news and policies since the
beginning of the war to assess the change in the volatility of exports of 218
countries and regions. Since Ukraine has many battlefields, there is a

reduction in production due to negative effects such as a lack of agricultural
management andunavailability ofharvest.After usingNDVI to estimate the
yield, we set 30% as the unavailability of harvest based on the FAO report67.
We used the pixel- and phenology-based model to estimate the yield
reduction of winter crops in Ukraine. Second, considering that Ukraine will
not export all its winter crops, we calculated the proportion of exports by
total production in 2021 and exports in 2021 and used the proportion of
grain exports in 2021 as the proportional distribution of exports to countries
in 2022. From these calculations, we constructed the trade networks
for 2022.

Trade ban data. The trade policy ban data were mainly from the food
availability portal—food and fertilizer export restrictions tracker—col-
lected in the press and provided by the International Food Policy
Research Institute, which the European Commission financially sup-
ports. The rest of the ban data wasmainly from government websites and
news. We collected relevant data for a total of 20 countries that issued

Fig. 8 | Winter cereal yield map generation flow. (1) Extraction of winter full crop
mapswas based on Sentinel-2MSI data andESAWorldCover products to determine
NDVI thresholding values through OTSU. (2) Maximum VH data were calculated
based on Sentinel-1 SAR data, and after the mean filtering process, the winter cereal

map was obtained by OTSU thresholding based on the winter crop mask and
RapeseedMap 10 product. (3) Yield estimation was based on NDVI and real yield
data of previous years combined with the winter cereal map.
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export bans related to winter grains and their products, and the specific
data can be viewed in the “Data availability” section.

Assessment of total reductions
Thewhole predicting framework consists of twomain parts: the assessment
of reductions in Ukraine, and the simulation of the next year’s trade net-
works through tracking export bans. The summary and workflow of the
remote sensing part are shown in Fig. 8 with more details reported in the
text. The workflow consists of the following steps: (1) Winter Crop
Extraction, (2) Winter Cereal Extraction, and (3) Winter Cereal Yield
Assessment.

Winter crop extraction. To obtain maps of three annual winter cereals
(wheat, barley, and oats), we implemented an automatic winter crop
extraction approach proposed by Skakun et al., which was previously
applied to map winter crops in Ukraine for 2016–201868. The approach
uses a phenological metric known as the maximum NDVI during the
green-up stage of winter crop development to differentiate winter crops
from summer crops. A croplandmapwas used as input data to generate a
binary cropland mask to eliminate the non-cropland area. For the
remaining areas, we extracted the maximum NDVI from March 1 to
April 6, which is considered the best informative period for early dif-
ferentiation between summer and winter crops68,69. Since the NDVI was
higher for winter crops and lower for summer crops during this period,
we applied the maximum between-class variance method (OTSU
thresholding) to automatically select appropriate thresholds for differ-
entiating winter and summer crops70. Taking into account the effect of
regional differences, we chose a threshold that best fit each state. Finally,
the binary mathematical morphological operations of erosion and dila-
tion with a radius of 6 pixels were applied to the winter crop maps to
reduce the salt-and-pepper noise presented as image speckles.

Winter cereal extraction. In the previous step, we extracted winter crop
distributions. To obtain the distribution of winter cereal, it is also
necessary to remove the disturbance of winter rapeseed, which has a
similar crop calendar to winter cereal. According to previous studies, the
VH backscatter of winter rapeseed has significant differences from
winter cereal in terms of its taller plants and randomly oriented branches
at late growth stages in May71. Thus, the maximum VH backscatter in
May was employed as a specific characteristic to distinguish winter
rapeseed from winter cereal72. After that, a mean filter with a kernel
radius of 1 pixel was applied to reduce speckle noise in VH-intensity
images73. Once again, we used OTSU thresholding and winter crops
mask to select thresholds for each state that would more accurately
identify winter rapeseed and winter cereal. For most of the Ukrainian
states, the area of winter rapeseed is much smaller than that of winter
cereal. In this case, the VH-VH-intensity image histogram was domi-
nated bywinter cereal. It no longer exhibited bimodality, which results in
the OTSU thresholding method selecting an inappropriate threshold
value. To address this issue, we collected winter rapeseed samples from
the RapeseedMap10 dataset and the same number of winter cereal
samples from winter crop maps after excluding winter rapeseed. We
used these samples as input to the OTSU thresholding method and
mapped winter cereal from 2019 to 2021 with the output threshold. As
before, we implemented binarymathematical morphology operations to
reduce the salt-and-pepper noise resulting from the classification.
Considering the general decline in crop NDVI due to the war, we
anticipated that ourmethodmight not performwell in extracting winter
cereals for 2022. Therefore, for the 2022 winter cereal distribution, we
used the 2021 winter cereal data to represent it. Moreover, at the time of
planting the winter crop in 2021, farmers did not anticipate the war and,
therefore, would not have reduced the planted area. This estimation
method was validated as feasible in previous studies due to the low inter-
annual fluctuations in crops15. There was a negligible difference in the
winter cereal distribution between 2021 and 2022.

Winter cereal yield assessment. Winter cereal yield assessment was
done by developing a random forest regression model combining NDVI,
climate records, and reference crop yield statistics (Fig. 9). With the
winter cereal mask, we extracted the maximum NDVI, cumulative pre-
cipitation, and average temperature during the growing season at the
state level as inputs. These variables were considered to be associatedwith
crop yields15,64.We randomly selected 80%of the samples for training and
reserved the remaining 20% for evaluating model accuracy.

Confidence intervals calculation for the prediction. To compensate
for the fact that the prediction results may include uncertainties such as
randomness and assumptions based on historical data, we calculated 95%
confidence intervals for the predicted data to improve the robustness of
the data. These assumptions, including changing environmental factors,
such as soil conditions and climatic factors, are considered consistent
across the dataset. The steps for calculating the confidence intervals were
as follows.

First, the mean of the dataset was calculated:

μ ¼
P

xi
n

ð1Þ

where μ is the mean value of data points, xi represents each individual data
point value, and n represents the total number of data points.

Second, we calculated the standard deviation (s):

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

xi � μ
� �2

n� 1

s

ð2Þ

Third, we calculated the standard error (SE). This step was used to
calculate the margin of the error:

SE ¼ s
ffiffiffi
n

p ð3Þ

Fourth, we calculated the confidence interval (CI):

CI ¼ μ± Z × SEð Þ ð4Þ

where Z = 1.96 for a 95% confidence level.
Finally, the sum range based on the confidence interval was calculated

bymultiplying the bounds of the confidence interval by the number of data
points:

SumRange ¼ CI × n ð5Þ

Network analyses
Network analysis is awidely accepted approach. It has been used to examine
the relationships within and between networks of nodes and the connec-
tions, or edges, that link them. The nodes of network analysis are usually
entities (including individuals, organizations, and countries), while the
edges represent the relationships or interactions between these entities.
Network analysis has been extensively applied in multidisciplinary studies
to reveal the underlying patterns and dynamics of complex systems. It has
been essential to sociology’s understanding of social interactions and
community structures, illuminating the connections between people and
groups74.Network analysis has also contributed to thefield of biology,where
it has been used to study gene interactions and protein function, thus
contributing to the development of genomics and systems biology34. Pre-
vious work also demonstrates a solid foundation for examining the com-
plexities of global trade systems bynetwork analysis. Kimand Shin applied a
social network approach to examine how regionalization and globalization
impact international trade patterns. They provided a longitudinal view of
the evolution of trade networks toward denser and more decentralized
forms, which validates the use of network analysis to comprehend global
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economic integration75. Mahutga explored how globalization and the “new
international division of labor” affect structural inequality in the world
economy through a network analysis76. Notably, other research further
discussed the trade structure. For instance, Fagiolo et al. provided a detailed
examination of the World Trade Web using a weighted network analysis,
highlighting the structural properties of trade relationships and their evo-
lutions over time, which revealed insights into trade interdependencies and
clustering behaviors of nations based on trade intensity77. In addition, Smith
and White explored how countries interacted in the global trading system
and the changing nature of their economic exchanges, thereby revealing

structural changes in trade networks44. The analysis of specific food trade
networks has also been conducted, with Chung et al. discussing the
dynamics of trade networks in space and exploring food trade networks in
the context of human health, which are influenced by a variety of factors in
health, agricultural, and trade policies78,79. Previous studies have also
examinedglobal seafood tradenetworks from1994 to 2012, highlighting the
trend of increasing globalization of seafood trade. Through network ana-
lysis, the authors identified changes in trade patterns, centrality, and part-
nerships, indicating increased regionalization78,80,81. The studies also
discussed the implications of these changes for food availability and

Fig. 9 | Network metrics in global winter cereal trade network analysis. Connectance, modularity, evenness, and modularity from top to bottom.
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environmental impacts. Useful attempts have also taken place in the trading
systemof crops. For example, a complex network analysis was used to study
the international wheat trade network from 2009 to 2013. The authors
assessed the network’s resilience and vulnerability to supply shocks, noting
that while the network’s resilience has improved slightly, some developing
countries have becomemore vulnerable. The study simulated the impact of
supply disruptions on food availability and analyzed howCOVID-19might
affect global wheat trade dynamics. These foundational studies underscore
the suitability of network analysis for exploring the complex dynamics of
interactions and dependencies among countries that characterize global
trade38.

Thus, in this study, we used network analysis to build a real-world crop
tradenetwork and simulated crop tradenetworks affected bywarproduction
cuts and trade ban policies enacted by global exporters. We focused on the
dynamics of three key network metrics: connectance, evenness, and mod-
ularity, which reflect the impacts of war on the food trade system. We used
the 2021UNCommodity Trade Statistics Database (Comtrade) to build the
2021 real-world trade network. Comtrade provides information on the year
of trade, commodity type, volume of goods, amount of trade, exporting
country, and importing country, and has been verified as a reliable source of
data for constructing tradenetworks for commodities82.Thenetworkdata for
2022 were constructed as a simulation combining the results of remote
sensing forecasts—production data after the Ukraine production cuts—and
policy data. First, the ratio between total Ukraine exports and production in
2021 was obtained, and the total amount of exports in 2022 was projected.
Second, keeping the ratio between Ukraine’s exports to other countries in
2021, data on Ukraine’s exports to other countries in 2022 were allocated
using the total amount of predicted exports. The countries that had enacted
export bans were considered “no trade” in 2022. Then, we constructed
simulated trade networks for 2022. To validate the accuracy of the simulated
2022 trade network, we compared the predicted trade quantities for wheat,
barley, oats, and total winter cereals against actual trade data obtained from
the2022Comtradedataset.Weconducteda comparative analysis byplotting
the predicted and actual trade quantities across income groups (high, upper-
middle-, lower-middle-, and low-income) to assess how well the simulation
aligned with real-world outcomes. We further conducted linear regression
analyses between the predicted and actual trade values, calculating R² values
to measure the strength of the correlation.

For each network, we calculated the connectance, evenness, and
modularity indices of the global trade networks for wheat, barley, and oats
by year for 2021 and 2022 through R package igraph. Connectance was
calculated as the proportion of present links to all possible links in the
network, weighted by the absolute value of the correlation coefficient in
previous studies83. Here, we adapted the traditional concept of connectance
by using trade volumes as proxies. This approach allowed us to quantify not
only the existence of trade relationships between countries but also the
intensity and economic significance of these connections. As a result, the
connectance values reported reflect the absolute magnitudes of trades,
rather than a normalized proportion of possible connections, which is
particularly valuable for analyzing the resilience and vulnerabilities of global
trade networks in the context of disruptions like the Russia-Ukraine war.
Evenness was referred to as the homogeneity of the link strengths in the
network. In the context of this research, where understanding the complex
interdependencies of international trade networks is essential, igraph offers
a range of community detection algorithms83. However, many of these
algorithms have limitations for this specific application. The edge
betweenness algorithm, which identifies clusters by removing high
betweenness edges, can be too computationally intensive for large trade
networks. The fast greedy algorithm, while efficient in modularity optimi-
zation, may struggle with the complex, overlapping relationships of global
crop trade. The InfoMap method, which relies on information theory to
reveal communities, may not accurately capture the nuanced trade flows.
The Louvain algorithm is efficient for large networks butmightmiss subtler
community structures. Theoptimal algorithmoffers the bestmodularity but
is computationally impractical for such vast datasets. Spinglass uses

simulated annealing formodular networks but can be sensitive to parameter
selection, and the Leiden algorithm improves on Louvain but still might not
capture the trade networks’ intricate patterns as effectively. In contrast, the
walktrap algorithm is best suited for capturing the nuanced and overlapping
communities within global crop trade networks, providing more mean-
ingful insights into complex trade relationships. Thus, modularity was
calculated by using walktrap in igraph, which separates densely connected
subgraphs via random walks using correlation coefficients as weights.

First, the volume of food trade is one of the hallmarks of globalization.
As globalization becomesmore advanced, developed supply chains facilitate
food trade between countries, providing food availability to more people in
food crises and increasing internal connectance. Conversely, counter-
globalization trends can reduce the volume of trade and cause decoupling
between countries. Moreover, reduced production caused by, for example,
natural disasters and wars, can increase demand in food-importing coun-
tries yet weaken the exports and capacities of food-exporting countries.
Second, suppose the evenness of food trade networks among countries
decreases by restricting or banning certain food exports through export
policies. In that case, the dependence on food-importing countries increases
globally for a fewmajor exporting countries and reduces the resilience of the
network. A reduction in production in the remaining exporting countries,
for any reason, could trigger a dramatic food availability risk. Third, a
decrease inmodularity (i.e., the emergence of anoligarchyof food exporters)
may breed new hegemonies. The pricing power for food would be in the
handsof a fewcountries, and thenumberofpeoplewhocannot afford tobuy
food will increase. Therefore, determining how diverse shocks alter these
different networkmetrics canprovide amore integrated viewofwar impacts
on global food availability.

The trade volumebetween countrieswas converted to a network graph
object and analyzed by the R package igraph83. In the network, the nodes
represent the individual countries that interact, and the trade quantity
between the nodes represents the directed food flows and their weights.
Specifically, in 2021,weused the export data reportedby countrieswith their
partners to construct a directed trade network, using the absolute trade
quantity, or trade quantity, as the connection weight between nodes. For
2022, we assumed that the trade network of countries would have remained
unchanged, except for the decline in exports due to reduced production in
Ukraine and thebanson exports byother countries toprotect their domestic
food availability. Thus, the network for 2022 was calculated based on 2021,
and the trade volumes of countries thathad enacted export banswere zeroed
basedon2021,meaning that these countrieswouldnot exportwheat, barley,
or oats to any country in 2022. In contrast, 2022 imports fromUkrainewere
recalculated for importing countries based on remotely estimated produc-
tion. First, we calculated the ratio between total exports and total production
of wheat, barley, and oats in 2021, which was used to calculate the ratio of
exports of these three winter cereals in 2022. Then, this ratio was applied to
the production estimated by remote sensing for 2022 to obtain the total
exports of the three cereals in 2022. Next, by calculating the ratio of exports
to each country to total exports, we simulated the exports from Ukraine to
other countries in 2022 and used these export volumes as weights for the
network. Besides the network metrics, we used the weighted node degree
(the average strength of connection to other nodes, calculated as the product
of the degree of a node and themean of the absolute correlation coefficients
of all connections) to calculate the connectance of countries in the inter-
action networks. We calculated this value for each node in the networks to
identify the most connected node and the change in connectance of each
node along thewinter crop tradenetwork.Wecompared the compositionof
the network modules from 2021 to 2022. Note that the existence and
composition of the modules in a network are independent of the network’s
modularity value, which means that modules can be identified even if the
modularity value is low.

Data availability
All data are available in the manuscript or Supplementary Materials,
or available at https://doi.org/10.5281/zenodo.13822382; https://comtrade.
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