Enduring Effects of Fertilizer Subsidies on Commercial Fertilizer Demand and Maize Production? Panel Data Evidence from Malawi

MICHIGAN STATE

J. Ricker-Gilbert, PhD

Department of Agricultural Economics, Purdue University

T.S. Jayne, PhD

Department of Agricultural, Food & Resource Economics, Michigan State University

Organized Symposium Presentation for the International Conference of Agricultural Economists: August 8-14 Milan, Italy

Hypotheses:

- 1) Households acquiring subsidized fertilizer in consecutive previous years do not purchase significantly more fertilizer on the commercial market than do other households
 - Longer-run issues of crowding out / crowding in
 - Extends previous studies examining current year impacts only (e.g., Xu et al. 2009; Ricker-Gilbert et al. 2011; Mason and Jayne 2013; Liverpool-Tasie 2014; Takeshima and Nkonya 2014).

Hypotheses:

- Households that acquire subsidized fertilizer in consecutive previous years do not produce significantly more maize in the current year than do other households.
 - Estimate impacts on maize area planted and output
 - Distributed lag model following job training and job loss literature (Ashenfelter 1978, and Jacobson et al. 1993).
 - Adds to studies measuring the current year impacts (Holden and Lunduka 2010; Chibwana et al. 2014; Mason et al. 2014)
 - Few studies look at impacts in longer-run (Carter et al. 2014) external validity issues...

Household Panel Data from Malawi

- 462 households all livelihood zones of Malawi
- Surveyed 4 times (2003/04, 2006/07, 2008/09, 2010/11).
 - Area planted, production, assets, etc.
- With recall data we know their fertilizer use by source for every year between 2003/04 & 2010/11.
- Led by NSO, SOAS, Wadonda consult, and MSU at different times.

Methods household (i) at time (t)

- $$\begin{split} \mathbf{Y}_{it} &= \alpha + \beta_0 \mathsf{Fert}_{it} + \beta_1 \mathsf{Fert}_{it-1} + \beta_2 \mathsf{Fert}_{it-2} + \beta_3 \mathsf{Fert}_{it-3} + \\ & \mathbf{HH}_{\mathbf{factors}_{it}} \boldsymbol{\delta}_{\mathbf{j}} + \mathbf{Prices}_{it} \boldsymbol{\delta}_{\mathbf{j}} + \mathbf{rainfall}_{it} \boldsymbol{\rho}_{\mathbf{j}} + \\ & e_i + v_{it} \end{split}$$
- Y_{it} = Commercial fertilizer demand (H₀1); Maize output (H₀2)

Contemporaneous effect = β_0 ; enduring effect = $\beta_1 + \beta_2 + \beta_3$

Fertilizer kgs = (Subsidized kgs + Commercial kgs)

Problem Subsidized kgs may be correlated with error. need to control this issue to make case for causal effect

Controlling correlation between Subsidized kgs and error term

- first-difference: controls for e_i
- show parsimonious specification to deal with remaining omitted variables that may be associated with Δv_{it} .

Descriptive Results

Average Kilograms of Fertilizer Used, by Year & Source

Descriptive Results

Average Fertilizer Use & Maize Yields, by Year

H₀1: Factors affecting kgs of commercial fertilizer purchased in year t

Dep. Var.: Kilograms of	(1)		(2)		(3)		(4)	
commercial fertilizer purchased	contempo	raneous	ye	ar t-1	ye	ar t-2	ye	ear t	-3
Covariates	Coeff.	P-value	Coeff.	P-value	Coeff.	P-value	coeff.		P-value
Kg sub. fert. acquired in yr t	-0.286 *	(0.06)	-0.149	(0.28)	-0.158	(0.146)	-0.073		(0.46)
Kg sub. fert. acquired in yr t-1	•		0.038	(0.245)	0.036	(0.363)	0.130	**	(0.03)
Kg sub. fert. acquired in yr t-2					-0.021	(0.770)	-0.014		(0.81)
Kg sub. fert. acquired in yr t-3							0.084	**	(0.04)
Other controls included	Y			Y		Y		Y	
Joint enduring effect (Subsidized									
Fertilizer t-1 + t-2)					0.015	(0.83)	(
Joint enduring effect (Subsidized									
Fertilizer t-1 + t-2 + t-3)							0.20	**	(0.041)

- Evidence of current year crowding out. Consistent with other studies.
- Statistically significant, and small evidence of crowding in over time. Annualized over 3 year period crowding in rate is 0.067.
 - May be partially due to credit constraint relief from subsidy or some wealth generation.
- Larger current year crowding out effects only partially mitigated by longer-run crowding in

H_02 : Factors affecting maize production in year t

Don Var : kilograms of maiza produced		(1)	(2)			
Dep. val kilografils of malze produced	conten	nporaneous	year t-1			
Covariates	(parsimonious)	(full)	(parsimonious)	(full)		
kg of total fertilizer acquired in yr t	1.53*** (0.000)	1.40*** (0.000)	1.33*** (0.002)	1.26*** (0.003)		
kg of total fertilizer acquired in yr t-1			-0.35 (0.220)	-0.37 (0.187)		
kg of total fertilizer acquired in yr t-2						
kg of total fertilizer acquired in yr t-3						
Other controls included	No	Yes	No	Yes		
Joint enduring effect of total fert. acquire	d in yr t-1 + t- 2^{Y}					
Joint enduring effect of tot. fert acquired	in yr t-1 + t-2 + t-3 [¥]					
Subsidized fertilizer indirect partial effect	é					
Kg subsidized fertilizer acquired in yr t		1.00*** (0.000)		1.07** (0.029)		
Kg subsidized fertilizer acquired in yr t-	1			-0.38 (0.385)		
Kg subsidized fertilizer acquired in yr t-2	2					
Kg subsidized fertilizer acquired in yr t-3	3					
Joint enduring effect of subsidized fertilized	er in yr					
t-1 + t-2 [¥]						
Joint enduring effect of subsidized fertilized	er in yr					
$t-1 + t-2 + t-3^{i}$						
Observations	1,386	1,386	924	924		
R-squared		0.141		0.106		
				9		

H₀2: Factors affecting maize production in year t

Conclusions

- Distinguish between current year and enduring effects of input subsidy programs
- H₀1 no crowding in/out: some evidence of a small enduring effect of crowding in. Annual rate of 0.067.
- H₀2 Production: fail to reject null of no enduring production impacts.
 - Some small current year impacts
 - Mainly through increased output. Consistent with other studies, and likely for Malawi with limited area expansion potential.

Conclusions Policy Implications

- Low response rates raise questions about how subsidies can be cost-effective.
- From policy perspective need to provide complimentary inputs for boosting response rates.
 - Response rates can be improved through timely delivery of fertilizer, soil management, weeding etc.
- Develop better targeting mechanisms to locate farmers who can obtain higher response rates (self targeting?).
 - Raise required farmer contribution (currently < 5% in Malawi).
 - Conditional subsidy (requires adoption of soil fertility management practices to participate).

Thank you for your time!

jrickerg@purdue.edu