
• Reword RStudio Project Windows

1 Purpose

• Create a script file to be read from other scripts
• Create a scatterplot in GGPlot
• Modify the scatterplot using components

The script for this lesson is here
• Save the R file, called lesson02-Components.R to the scripts folder inside your RStudio Project

The data for this lesson (Lansing weather in 2016) is here
• Save the CSV file, called Lansing2016NOAA.csv to the data folder inside your RStudio Project (this is the

same file as last lesson).
• It is best to use the operating system’s File Explorer/Finder to move the CSV file to the proper folder.

◦ Trap: Using Excel to move files

2 Spacing Code

In GGPlot, you create a plot by initializing a GGPlot canvas, with ggplot(), and then add components (e.g., a
boxplot) to the canvas. Most components will, in turn, have subcomponents, (e.g., color or size).

Figure 1 shows a plot that has:
• A function to initialize GGPlot – highlighted in blue
• Five components – highlighted in yellow
• + to “add” components to the canvas – highlighted in green
• 10 subcomponents – highlighted in red

02: Components

0.1 To-do

1.1 Code for the lesson

https://qfcatmsu.github.io/GGPlot-Class-Material/scripts/lesson02-Components.R
https://qfcatmsu.github.io/GGPlot-Class-Material/scripts/lesson02-Components.R
https://qfcatmsu.github.io/GGPlot-Class-Material/data/Lansing2016NOAA.csv
https://qfcatmsu.github.io/GGPlot-Class-Material/data/Lansing2016NOAA.csv

We will be going over the code in Figure 1 in much more detail in later lessons. For now, we are going to focus
on the spacing. As you can see in Figure 2, the code for a plot can quickly get unwieldy– that is why it is
important to consider code spacing from the very beginning. For this class, all components and
subcomponents on a GGPlot will get its own line of code. This is also a requirement for all the lesson
applications as it makes the code much easier to read.

Figure 1: Spacing code to emphasize the different components of a plot

2.1 Component and subcomponent spacing

The components of a GGPlot are really the functions in the GGPlot package. The subcomponents are the
arguments of those functions.

One component (i.e., function) in the GGPlot package is labs(), which is the labeling component in GGPlot.
labs() has multiple subcomponents (i.e., arguments) representing the different parts of the plot that can be
labelled. labs() was used in Figure 1 to add a title and subtitle and x-axis and y-axis labels. It looks like this:

In this class, we will refer to labs() as a component and title, subtitle, x, and y as subcomponents.

3 How to make comments in R

Figure 2: Poorly spaced code – it works but it is too hard to read!

2.2 GGPlot Functions are components

labs(title = "Change in Temperature vs. Wind Direction",

subtitle = "Lansing, Michigan: 2016",

x = "Wind Direction",

y = "Degrees (Fahrenheit)")

https://ggplot2.tidyverse.org/reference/
https://ggplot2.tidyverse.org/reference/
https://ggplot2.tidyverse.org/reference/labs.html
https://ggplot2.tidyverse.org/reference/labs.html
https://ggplot2.tidyverse.org/reference/labs.html
https://ggplot2.tidyverse.org/reference/labs.html

In the R language, comments are created using the number-sign (#) key. Any text on the line after the (#)
will be treated by R as a comment and it will not be executed. In Figure 2, there are comments on lines 2, 3, 4,
8, 11, and 12. These comments are colored light green but the color of the comments depends on your color
scheme ([Color Schemes (extension)]).

You are required to make use of comments for your project in this class. Aside from being a good practice, it
significantly reduces the frustration level of people who are trying to evaluate your work! Commenting also
significantly reduces the frustration you will feel when trying to read your own code after an extended absence.

4 Open your project

We are going to open the RStudio Project we created in the last lesson. You can open your project by any of
the following three methods:
1. Go to your Project Folder using your operating system’s file manager and double-clicking the .RProj file
2. In RStudio: click File -> Recent Projects -> (choose your project)
3. In RStudio: click File -> Open Project -> Navigate to the Project Folder and click the .RProj file

Extension: RStudio Project windows

5 Starting a new script

To create a new script in RStudio, click File -> New File -> R Script.

All the scripts in this class will contain these three lines at the top:

Copy the three lines to your new script file and save this script as lesson02.R inside the scripts folder in your
Project (File -> Save as… -> open scripts folder -> click Save).

This line removes all the variables and data from the Environment tab. Basically, this means your script can be
executed with a clean slate. This is useful when you are creating scripts that are designed to be executed as a
standalone script.

rm(list=ls()); # clear the Environment tab

options(show.error.locations = TRUE); # show line numbers on error

library(package=ggplot2); # include all GGPlot2 functions

5.1 Cleaning the Environment

rm(list=ls()); # clear the Environment tab

5.2 Error locations

This line is good to include in your R code because it instructs R to output to Console the line number that
errors occur on. However, this error detection does not work well within GGPlot functions – so, it is of limited
use in this class.

This line gives your script access to all of the functions in the GGPlot2 package. This package is technically the
third version of GGPlot – but no one uses the first two versions (ggplot and ggplot1) anymore.

6 GGPlot components and subcomponents

GGPlot is based more on a building metaphor where the plot is made up of a bunch of component parts.
whereas R-Base plotting (what GGPlot was built to replace) is based on the metaphor or drawing on a
transparency.

One way to think about the functions is that they are components of a plot. Each time you call a GGPlot
function, you are either adding a component to a plot or modifying an existing component. For this class, I
refer to the functions in GGPlot as components.

The arguments for GGPlots functions can be thought of as subcomponents of the components.

The full list of functions in the GGPlot package is here:
https://ggplot2.tidyverse.org/reference/

And a helpful resource for many R packages is the cheat sheets – the most recent cheat sheet for GGPlot2 can
be downloaded here:
https://github.com/rstudio/cheatsheets/blob/main/data-visualization.pdf

7 Opening the data file

The data file, Lansing2016NOAA.csv, contains weather information from the NOAA for 2016.

We will use read.csv() to open the file and save the data to a data frame named weatherData. read.csv()
reads in the data from the CSV file – and saves the data to a variable named weatherData.

options(show.error.locations = TRUE); # show line numbers on error

5.3 GGPlot2 Package

library(package=ggplot2); # include all GGPlot2 functions

https://ggplot2.tidyverse.org/reference/
https://ggplot2.tidyverse.org/reference/
https://github.com/rstudio/cheatsheets/blob/main/data-visualization.pdf
https://github.com/rstudio/cheatsheets/blob/main/data-visualization.pdf

weatherData is a data frame variable and it appears in the Environment tab under Data as 366 obs. of 29
variables. (i.e., 366 rows and 29 columns)
• Double-clicking on weatherData opens the data frame in the File Viewer window. This is a convenient

way to visualize the data frame.
• Clicking on the arrow to the left of weatherData provides information about each of the columns

8 Create plot data using GGPlot

Next, we will create a scatterplot of average temperature (avgTemp column) vs. humidity (relHum column)
from weatherData.

The code to create a scatterplot using GGPlot is:

read in CSV file and save the content to weatherData

weatherData = read.csv(file="data/Lansing2016NOAA.csv");

7.1 Viewing the data frame

Figure 3: Viewing the data inside the data frame

Part 1: Create a scatterplot

 plot1 = ggplot(data=weatherData) +

geom_point(mapping=aes(x=avgTemp, y=relHum));

plot(plot1);

Click the Source button the script and this plot appears:

Below I highlight the argument names in the code:

In the script below, the argument names are removed but it will still create the same plot:

This script without arguments works because, for this specific example, we
• only used the default arguments for each function
• used the arguments in the same order they appear in the function.

However, you should never code using these assumptions!

Figure 4: Our first plot using GGPlot with argument names highlighted

8.1 Taking out argument names

Part 1: Create a scatterplot

 plot1 = ggplot(data=weatherData) +

geom_point(mapping=aes(x=avgTemp, y=relHum));

plot(plot1);

Part 2: Same scatterplot without argument names

plot2 = ggplot(weatherData) +

geom_point(aes(avgTemp, relHum));

plot(plot2);

8.2 Benefits of using argument names

In this class, we will (almost always) use argument names because using argument names:
• makes the code more intuitive to the reader – and making code more intuitive should (almost always) take

precedence over saving space.
• means that you can order the arguments however you want
• avoids bad assumptions about the ordering of arguments and their default values

The one exception where we will not use argument names is:

instead of

There are multiple functions in R and GGPlot where the argument name x is used generically as the name for
the first argument in a function. This is not intuitive when plotting because x is also used to refer to data that
maps to the x-axis.

We will use the argument name x when x refers to the x-axis (e.g., x=avgTemp) but not when x is a generic
name for the first argument (e.g., x=plotData).

9 Components of a GGPlot

Let’s take a more detailed look at the three lines of code that created the scatterplot.
The function ggplot() creates a canvas where the plots will be drawn. The argument data gives the data frame
that will be used for the plots, weatherData:

Next, we add the component, geom_point(), which creates a scatterplot using the avgTemp and relHum
columns from weatherData:

The canvas is saved to a List variable named plot1:

plot(plotData) # no argument name here

plot(x=plotData) # x is the argument name

 plot1 = ggplot(data=weatherData) +

geom_point(mapping=aes(x=avgTemp, y=relHum));

plot(plot1);

 plot1 = ggplot(data=weatherData) +

geom_point(mapping=aes(x=avgTemp, y=relHum));

plot(plot1);

plot1 = ggplot(data=weatherData) +

geom_point(mapping=aes(x=avgTemp, y=relHum));

plot(plot1);

And then plot() is used to display the canvas saved in plot1:

Extension: The yellow warning sign (which you might or might not see)

In GGPlot, you initialize a canvas and then add components to the canvas. The (+) symbol is used to add
components, and you can string multiple components together. In the above example, there is the initializing
canvas function, ggplot(), and one component, geom_point():

1) ggplot() is used to initialize a GGPlot canvas with the data from weatherData:

2) geom_point() is a plotting component that creates a scatterplot

All plotting components in GGPlot contain a subcomponent called mappings. mapping is used to describe
the relationship between the data and the plot. Or, another way to put it, mapping defines what data gets
represented on the plot (e.g., avgTemp and relHum) and how the data gets represented (e.g., avgTemp on x-
axis, relHum on y-axis):

The mapping is set to a mapping element called an aesthetic (aes). The concept of an aesthetic comes into
play when we are generating legends and creating data categories, which we will talk about in future lessons.
In the meantime, it is easier to just think of aes as a mapping element.

10 Adding more components to the canvas

Let’s make the three following modifications to the plot:
1. add a title and change the axes labels
2. change the numeric tick marks on the y-axis
3. change the direction of the x-axis labels

 plot1 = ggplot(data=weatherData) +

geom_point(mapping=aes(x=avgTemp, y=relHum));

plot(plot1);

9.1 GGPlot components

plotData = ggplot(data=weatherData) +

geom_point(mapping=aes(x=avgTemp, y=relHum));

plotData = ggplot(data=weatherData) +

geom_point(mapping=aes(x=avgTemp, y=relHum));

9.2 GGPlot mapping and aesthetics (aes)

plotData = ggplot(data=weatherData) +

geom_point(mapping=aes(x=avgTemp, y=relHum));

To do this we will add three new components to the canvas:
1. labs() # label component
2. scale_x_continuous() # x-scaling component (there is a corresponding y-scaling component)
3. theme() # theme component

Note: you can also add more plotting components to the canvas (e.g., line plot, histogram) – this will be shown
next lesson.

We add components using (+) and subcomponents are the arguments within the components:

Trap: putting the (+) on the next line

 plot3 = ggplot(data=weatherData) +

geom_point(mapping=aes(x=avgTemp, y=relHum)) +

labs(title="Humidity vs Temperature",

subtitle="Lansing, MI -- 2016",

x = "Average Temperatures (Fahrenheit)",

y = "Relative Humidity") +

scale_x_continuous(breaks = seq(from=10, to=80, by=10)) +

theme(axis.text.x=element_text(angle=90, vjust=0.5));

plot(plot3);

Figure 5: Scatterplot with a few added components

10.1 The Components in detail – labs()

When we search in the Help tab for labs() (Figure 6) we see that it has many subcomponents (or arguments)
to change including:
• label: the title
• subtitle: a secondary title

A couple of notes about the information about labs() in the Help tab:
• There are many ways to add axes labels, labs() merges these methods into one component. Because of

this, the Help section does not explicitly show the x and y arguments (although, the examples do). This is
one area where the Help could do a better job reflecting the functionality of a function.

• waiver() is the default value given by the plotting function (i.e., waiver() does whatever the plotting
functions thinks is best)

labs(title="Humidity vs Temperature",

subtitle="Lansing, MI -- 2016",

x = "Average Temperatures (Fahrenheit)",

y = "Relative Humidity") +

Figure 6: Using the Help Tab in RStudio to find info about GGPlot components

10.2 The Components in detail – scale_x_continuous()

scale_x_continuous(breaks = seq(from=10, to=80, by=10))

scale_x_continuous() is the component used when you want to modify an x-axis that has continuous values.
There are many subcomponents (Figure 7) that can be changed in scale_x_continuous() and the
corresponding scale_y_continuous(). We modified one subcomponent, breaks, by setting it to a sequence
from 10 to 80 with numeric values place at intervals of 10.

note: there is also a corresponding component named scale_x_discrete, which modifies x-axes with discrete
values

In this example we changed one subcomponent in theme() called axis.text.x and set it to an element_text()
that modifies the text by rotating it to an angle of 90 degrees and centering the text (vjust=0.5). Note: the
default for vjust is 1, meaning the text will be vertically justified to the bottom. vjust=0 means the text will be
vertically justified to the top.

Figure 7: scale_x_continuous help page

10.3 The Components in detail – theme()

theme(axis.text.x=element_text(angle=90, vjust=0.5))

Broadly speaking, theme() is used to make modifications to the canvas (the plots and the background) that are
not related to the data. theme() is probably the most used component in GGPlot and we could spend many
lessons going through all the subcomponents of theme(). We will be using theme() a lot more in future
lessons and talking more about elements (e.g., element_text()).

A good place to find more information about components in GGPlot is the Help tab in the lower-right corner
of RStudio (Figure 8). The Help tab provides information directly from https://ggplot2.tidyverse.org/reference/,
which is the official webpage for GGPlot.

Figure 8: theme() component help page in the Help tab (yes, there is a lot there!)

10.4 For more help with components

https://ggplot2.tidyverse.org/reference/
https://ggplot2.tidyverse.org/reference/

11 Getting rid of the grey (themes)

The default GGplot theme, which uses the gray background is not one of my favorite. Luckily, GGPlot makes it
easy to change the theme. The components that do this, called complete themes, are on this page. I will
change to the black-white theme, theme_bw():

Part 4: Changing the theme

 plot5 = ggplot(data=weatherData) +

geom_point(mapping=aes(x=avgTemp, y=relHum)) +

labs(title="Humidity vs Temperature",

subtitle="Lansing, MI -- 2016",

x = "Average Temperatures (Fahrenheit)",

y = "Relative Humidity") +

scale_x_continuous(breaks = seq(from=10, to=80, by=10)) +

theme_bw() +

theme(axis.text.x=element_text(angle=90, vjust=0.5));

plot(plot5);

https://ggplot2.tidyverse.org/reference/ggtheme.html
https://ggplot2.tidyverse.org/reference/ggtheme.html
https://ggplot2.tidyverse.org/reference/ggtheme.html
https://ggplot2.tidyverse.org/reference/ggtheme.html
https://ggplot2.tidyverse.org/reference/ggtheme.html
https://ggplot2.tidyverse.org/reference/ggtheme.html

A complete theme (e.g., theme_bw()) overwrites the whole theme for the canvas. This means it will overwrite
any theme changes you previously made:

Figure 9: Setting the GGPlot theme to black and white

11.1 Complete themes must come before theme changes

Part 5: Changing the theme --- oops, undoes theme

 plot5 = ggplot(data=weatherData) +

geom_point(mapping=aes(x=avgTemp, y=relHum)) +

labs(title="Humidity vs Temperature",

subtitle="Lansing, MI -- 2016",

x = "Average Temperatures (Fahrenheit)",

y = "Relative Humidity") +

scale_x_continuous(breaks = seq(from=10, to=80, by=10)) +

theme(axis.text.x=element_text(angle=90, vjust=0.5)) +

theme_bw(); # this complete theme change will remove the theme change

above

plot(plot5);

So, make sure you put your theme changes after your complete theme.

12 Application

A) Looking at the GGPlot cheat sheet (or the GGPlot functions page) from Section 6, answer the following in
comments in your script file
1. What component (function) would be used to create a text plot?
2. What component would you use to change the breaks on the x-axis if the values were in date format?

C) Create a scatterplot in GGPlot in the app1-02.r script:
1. Create a scatterplot of stnPressure vs windSpeed using the data from Lansing2016NOAA.csv
2. Add a title and labels the axes appropriately
3. Change the plot theme to one of your choice
4. Change the angle of the stnPressure axis labels to 45 degrees
5. Change the stnPressure breaks to go up by 0.1

Figure 10: The complete theme change removed the theme change above it (the axis labels are no longer at 90 degrees)

6. Have the wind-speed axis only display three values: 3, 12, 21
7. Challenge: Use the limits argument in scale_x_continuous and scale_y_continuous to remove the top and

right parts of the plot where there are only a couple points.
• limits is set equal to a vector with two values – so limits = c(0,100) would mean the axis would go

from 0 to 100

If you have any questions regarding this application, feel free to email them to Charlie Belinsky at
belinsky@msu.edu.

Answer the following in comments inside your application script:
1. What was your level of comfort with the lesson/application?
2. What areas of the lesson/application confused or still confuses you?
3. What are some things you would like to know more about that is related to, but not covered in, this lesson?

Save the script as app02.r in your scripts folder, Push the changes to your GitHub repository, create an Issue in
GitHub that says you have finished the application and assign the issue to belinskyc.

13 Extension: RStudio Project windows

An RStudio Project takes the whole RStudio window – also called an RStudio Session. If you want to open up a
second RStudio Project, you need to start a new RStudio Session (i.e., a new RStudio window). This can be
done by clicking File -> Open Project in New Session…

14 Trap: Using Excel to move files

On many computers, Microsoft Excel is the default application for opening CSV files – so double-clicking on a
CSV file opens it in Excel. So, it is common for people to open a CSV file in Excel and then save it to a different
folder.

There are a couple of issues with using Excel to move CSV files:
1. Some versions of Excel will ask you to save the file with an XLSX extension – make sure you ignore that.

This will convert the file from a CSV to an XLSX, and the file will be unreadable in R if you use read.csv().
There are packages that can read XLSX files but you are unnecessarily adding complexity.

2. Excel will occasionally change the format of a column. For instance, if you have a column with values that
look like this: 01-01, 01-02, 01-03 then Excel will likely switch those values to dates like this: Jan-1, Jan-2,
Jan-3

12.1 Questions to answer

12.2 Turn in on GitHub

https://qfcatmsu.github.io/GGPlot-Class-Material/lessons/01b-GitAndGitHubSetup.html#Issues
https://qfcatmsu.github.io/GGPlot-Class-Material/lessons/01b-GitAndGitHubSetup.html#Issues
https://qfcatmsu.github.io/GGPlot-Class-Material/lessons/01b-GitAndGitHubSetup.html#Issues
https://qfcatmsu.github.io/GGPlot-Class-Material/lessons/01b-GitAndGitHubSetup.html#Issues

You should not use Excel to move a CSV. Instead, use the system’s File Explorer (Windows) / Finder (Mac) to
move the file. You can also safely open the CSV file in RStudio and save it to another location.

15 Trap: Putting the (+) on the next line

The (+) commands strings together the components of a GGPlot. A common mistake is to put the (+) at the
beginning of the following line:

This will result in an error and a surprisingly wise assessment of the problem fro the R debugger.

The reason for this error is that R thinks that line 5:

source(file="scripts/reference.R");

packageData = read.csv(file="data/CRANpackages.csv");

plotData = ggplot(data=packageData)

+ geom_point(mapping=aes(x=Date, y=Packages))

+ ggtitle(label="Packages in CRAN (2001-2014)")

+ scale_y_continuous(breaks = seq(from=0, to=6000, by=500))

+ theme(axis.text.x=element_text(angle=90, hjust=1));

plot(plotData);

Figure 11: Error when putting the (+) on the next line

is a fully-formed and completed command

And R does not understand why line 6 starts a new command with a (+)

A (+) at the end of a line tells R to append the next line to the current line. A (+) at the beginning of a line
tells R to perform the mathematical operation addition.

16 Extension: The yellow warning sign

When you are working in GGPlot and have diagnostic features turned on in RStudio (located at Tools ->
Global Options… -> Code -> Diagnostics):

plotData = ggplot(data=packageData)

+ geom_point(mapping=aes(x=Date, y=Packages))

You will almost always see multiple yellow warning signs on the side of your code (Figure 13) The warning no
symbol named ‘Date’ in scope means that RStudio does not recognize Date as a variable or a function. This is
because Date is a variable within the GGPlot function geom_point(), and the debugger is not sophisticated
enough to always search through the GGPlot functions.

This is just a limitation of the RStudio debugger and does not reflect an actual issue.

Figure 12: The diagnostic features in RStudio – the highlighted line is causing the scope warning

Figure 13: Warning about variables within the GGPlot functions

