

CLIMATE CHANGE IN THE GREAT LAKES REGION

Don Scavia
University of Michigan

Global Temperature

Global, Regional, Local

Global trends are more certain than regional trends

Natural variability plays a larger role at the regional scale

Local land use changes can alter severity of climate impacts

What has Changed?

Changes are often discussed as averages ...

... but most environments are managed in terms of timing and extremes.

Today's Outline

Changing Temperatures

- What has happened
- What is projected
- What are the likely impacts

Changing Precipitation

- What has happened
- What is projected
- What are the likely impacts

What has Changed?

Changes are often discussed as averages ...

... but most environments are managed in terms of timing and extremes.

Observed Michigan Temperature

Changes in Average Temperature (°F) from 1951-1980 to 1981-2010	
Annual	0.9
Winter	1.9
Spring	1.1
Summer	0.5
Fall	-0.1

Winter temps and overnight lows increased faster than annual averages.

Observed Heat Waves

Heat waves that pose risks to human health increased in most major Midwestern cities.

Increasing overnight, minimum temperatures increased faster, limiting relief during hot periods.

Observed Change in Number of Harmful Heat Waves

Chicago, IL 1948–2011 (63 years)

Detroit, MI 1959–2011 (52 years)

Migrating Plant Hardiness Zones

Average extreme minimum temperatures migrated north.

Longer Midwestern Growing Season

Growing season lengthened by ~1-2 weeks

Mostly due to earlier last winter frost in spring

Growing season in 2100 may be 1-2 months longer

The Great Lakes are Warming

Average Great Lakes ice coverage declined 71% percent from 1973 to 2010

Wang et al., 2012

Lake Superior water is warming twice as fast as air

Lake Superior could have little to no open-lake ice cover during a typical winter within the next 30 years

Projection: A Migrating Climate

Future generations will experience a fundamentally different climate.

By the end of this century,
Michigan summers will feel
like current summers in
Arkansas.

Projected Midwest Temperature Increases

Impacts in the Great Lakes Region

Changes in <u>temperature</u> and precipitation will impact both engineered and natural environments.

Fish
Water
Energy
Forests
Agriculture
Biodiversity
Public Health
Transportation

Birds and Wildlife
Tourism and Recreation

More Hot Days Projected

GLISA

Impacts of Declining Lake Ice Cover

Wang et al., 2012

- Fishing Industry: Harms whitefish spawning areas and increased wetland
- Coastal Zone: Loss of stable platform for recreation
- Navigation: Potentially lower water levels; lengthened shipping season

Potential Impacts on Shipping

Every lost inch of water depth:

- Reduces cargo capacity 50-270 tons
- Costs \$10k-30k per transit

...but less lake ice cover also allows for a longer shipping season

Lake Level Projections

Projected Shifts in Forest Types

Impacts on Biodiversity

- Amplified existing stressors, including sensitivity to land and water use
- Some species will need to migrate to keep up with the pace of warming ...

... but, large agricultural areas and the Great Lakes are major obstacles to migration

Impacts on Agriculture

- Some crops may benefit in the near future from increasing carbon dioxide concentrations until negated by warmer temperatures.
- Perennial crops may be more vulnerable to the pace of climate change and may face greater adaptation challenges.

Agriculture Vulnerabilities: Spring 2012 Cherry Crops

- The early warming was extreme weather event
- The seasonal warming fits a pattern of a more variable climate

- The early warming followed by a normal hard freeze was devastating to cherry buds
- \$92 million loss from tart cherries alone

What has Changed?

Changes are often discussed as averages ...

... but most environments are managed in terms of timing and extremes.

Observed Michigan Precipitation

Changes in Total Precipitation (%) from 1951-1980 to 1981-2010	
Annual	5.0
Winter	5.6
Spring	1.3
Summer	-1.0
Fall	15.8

Precipitation increased in Winter and Fall but remained stable or have declined during Spring and Summer.

Observed Extreme Precipitation Intensity

1% of precipitation events increased from 1958 to 2007.

Observed Extreme Precipitation Frequency

Frequency of heaviest 1% of precipitation events increased from 1958 to 2007.

Observed Snowfall Change

Snowfall increased in the North & decreased in the South

Changing Winter Precipitation

- Lake effect snow increased in some areas.
- But, shorter winters led to more falling as rain.

Warmer surface temperatures also reduced snow accumulation.

Projected Precipitation

Percent Change

-15 - -10-10 --5

5-0 0-5 5-10

15 - 20

Winter +5 to 20%

(2041-2070 minus 1971-2000)

NARCCAP, Precipitation Change, Fall (2041-2070 minus 1971-2000)

Annual +5 to 15%

Spring +0 to 20%

Summer +10 to -10%

Kunkel (2011)

GLISA

Impacts in the Great Lakes Region

Changes in temperature and <u>precipitation</u> will impact both engineered and natural environments.

Fish
Water
Energy
Forests
Agriculture
Biodiversity
Public Health
Transportation

Birds and Wildlife
Tourism and Recreation

Flooding and Stormwater

Stronger and more frequent extreme events amplify flood risks.

Impacts on Agriculture

- Increasing intensity of severe storms increases the risk of runoff and erosion.
- Shifts in the timing of precipitation will affect field preparation time in spring.

- Some crops may benefit in the near future from increasing carbon dioxide concentrations until negated by warmer temperatures.
- Perennial crops may be more vulnerable to the pace of climate change and may face greater adaptation challenges.

Conspiring Changes: Water Quality

Algal Blooms and Fish Kills

How will we adapt?

Are we preparing to adapt?

Extra Slides

Projected Snowfall Days

