### Abstract

CSS 488 Agricultural Cropping Systems: Integration and Problem Solving is a capstone course designed to enhance critical thinking skills in seniors completing a B.S. in Crop and Soil Sciences or an Agronomy Minor. Assignments include two semester long projects and one, two week assignment that require group work and collaboration. Groups are assigned based on academic majors, personal background, and student evaluation of their competence areas. For the Farm Report, students work in small groups to develop a farm report outline after reviewing three published case studies of farms. Students then write their own farm report throughout the semester. Grading is based on content of the farm report and inclusion of the reasoning behind various farm management practices. For the Crop Rotation exercise, student groups are given six crops in an envelope and initially decide a crop rotation. Throughout the semester, the agronomic and input cost information to design the cropping system including tillage operations, planting dates, seeding rates and row spacing, soil fertility programs, and pest management is added. Soil organic matter is calculated throughout the six year rotation. For the final project, groups are required to convert a county to organic production. Current crop acreage and livestock numbers are provided and students may not export or import feed or manure. Critical thinking skills in nutrient and manure management are enhanced, as well as skills in managing cover crops. These assignments require students to take course content based material and apply it to integrated cropping systems projects, enhancing information gathering, data synthesis, communication, and team-building skills.

# **Integrated Cropping Systems: A Capstone Course Designed to Enhance Critical Thinking**

Karen A. Renner, Professor

and the seniors and graduate students enrolled in CSS 488 Spring Semester 2013 Department of Plant, Soil and Microbial Sciences, Michigan State University

### **Crop Rotation Exercise**: rotation; planting and harvest dates; SOM changes over time\*

| <u>Crop Rotation -</u> | Interstate Group      |                    |                  |          | Soil          | : Loamy-sand             | pH = 6.2   | SOM = 1.5%  |
|------------------------|-----------------------|--------------------|------------------|----------|---------------|--------------------------|------------|-------------|
|                        | Potato Whea           | at                 | Alfalfa          |          | Potato        | Field                    | corn       | Kidney      |
| Crop                   |                       |                    |                  |          |               |                          |            |             |
| Cover                  |                       |                    |                  |          |               | 10 20 21                 |            | <b>9</b>    |
| .+rye                  |                       |                    |                  |          |               | R. clover+rye            | Annual rye | R           |
| Year                   | 1                     | <u>MAMJJA</u><br>2 | SONDJFMAMJJ<br>3 | ASONDJE  | - MAMJJA<br>4 | SONDJFMAMJJA<br>5        | A SONDJEMA | M J J A S O |
|                        | -                     |                    |                  |          | -             |                          | 1 . 7.     |             |
| Сгор                   | Date on               |                    | Date off         | Planting | Seeding rate  | e                        | Cost/acre  |             |
| Potato                 | April 25-June 5       |                    | Aug-Sept         | Hill     |               | 2,000lb/acre             | 250        |             |
| Wheat                  | Sept 15-Oct 20        |                    | June 15-July     | Drill    |               | 1.6 mil. seeds/acre      | 50         |             |
| Alfalfa                | July                  |                    | April-May (yr4)  | Drill    | 12            | 15-20                    | 50         |             |
| Potato                 | April 25-June 5       |                    | Aug-Sept         | Hill     |               | 2,000lb/acre             | 250        |             |
| R. clover+Rye          | Fall drill rye, frost | seed clover        | Glyphosate kill  | see left | 8lb           | (R. clover) + 10lb (rye) | 24+6 = 30  |             |
| Field Corn             | April 15-May          |                    | Oct              | No-till  | 3.0.0         | 32-35                    | 100        |             |
| Annual rye             | IK P 1                |                    | Glyphosate kill  | Drill    |               | 20lb/acre                | 12         |             |
| Kidney Beans           | June 1                |                    | Sept. 15         | No-till  | 1             | 70-75                    | 50         |             |
| R. clover+Rye          | Fall drill rye, frost | seed clover        | Glyphosate kill  | see left | 8lb           | (R. clover) + 10lb (rye) | 24+6 = 30  |             |
| SOM                    |                       |                    | Dry lbs. C       | lbs.     | C retained    | Added SOM                | Total SOM  |             |
| Crop                   | lbs. Residue          | C:N                | x.4              | -        | x.35          | x2                       | lbs. **    | % SO        |
| Potato                 | 2000                  | 20                 | 800              | 100      | 280           | 560                      | 29960      | 1.49        |
| Wheat                  | 4000                  | 80                 | 1600             | 20       | 560           | 1120                     | 30480.8    | 1.52        |
| Alfalfa†               | 4000                  | 13                 | 1600             | -        | 560           | 1120                     | 31308.2    | 1.56        |
| Potato                 | 2000                  | 20                 | 800              |          | 280           | 560                      | 31242      | 1.56        |
| R. clover+Rye *^       | 3000                  | 40                 | 1200             |          | 420           | 840                      | 200.3      | -           |
| Field Corn             | 8000                  | 60                 | 3200             |          | 1120          | 2240                     | 32857.2    | 1.64        |
| Annual rye             | 3000                  | 40                 | 1200             |          | 420           | 840                      |            |             |
| Kidney Beans           | 2200                  | 30                 | 880              |          | 308           | 616                      | 32816      | 1.64        |
| R. clover+Rye^^        | 3000                  | 30                 | 1200             |          | 420           | 840                      | 32999.7    | 1.65        |



Objectives

- Design and teach a capstone course to agronomy majors and minors that builds on previous coursework, personal background and internship experiences
- Design and assign student group projects that enhance information gathering, data synthesis and analysis, communication, and team-building skills

Syllabus (abbreviated)

\* A portion of the Crop Rotation Exercise assignment

+Based on 2500 gallons/acre @ 6% dry matter = 150 gal of solids, 25% of that as added SOM. 38 gal x 8.34 lb/gal = 317 lbs. \* estimate 1500 rye + 1500 clover. ^mixture of C:N, young clover (1:20) and rye (1:40) = 1:30. \*\* ~2% SOM lost each year due soil respiration. ^^ only 1% removed since only half a year



### **Instructions:**

- 1. Students have read examples of four farm case studies in class.
- 2. Students have discussed briefly the content of these farm case studies.
- 3. Students have listened to 'live' young Michigan farmer reports.
- 3. Students formulated a list of what should be included in a farm report.
- 4. Students will visit with a farmer. It is strongly suggested that the student visit the farm at least twice; once to meet with the farmer and ask questions about the farm, soil types, rotations, crop row spacing, varieties, populations, tillage system, etc. from the first seven weeks of class (late February) and then meet with the farmer again in late March to ask questions about pest management, future farming plans, etc.

| Date       | Topics in Class                                                                                                                        | Assignments                                                                                                                                  | Due Today:                                                                        |  |
|------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|
| Weeks 1-3  | Integrated (and <i>not</i><br>integrated) Cropping<br>Systems:<br>Midwest; Cotton<br>Benefits of rotations<br>MI AgBus Assoc. meeting: | Crop rotation readings<br>Diverse Crop Rotations<br>IWMFT pp. 1-22<br>Soil Quality, Carbon and<br>Food Webs MFCE pp.14-<br>27, MPE pp. 25-34 | Worksheet and<br>short opinion<br>paper "Can you<br>beat the rotation<br>effect?" |  |
| Weeks 4-5  | Fertilization: N, P, K<br>Sources and systems                                                                                          | N fertilization and carbon<br>sequestration reading<br>Cover Crops -reading<br>Manure and Compost<br>IWMFT pp. 47-60                         | N fertilization<br>and carbon<br>sequestration<br>worksheet WS                    |  |
| Week 6     | Sustainability of Cropping<br>Systems: Economic,<br>Environment and Social                                                             | Attend Climate Change<br>Academy                                                                                                             | Farm Case<br>Study analysis                                                       |  |
| Week 7     | Climate Change<br>Convergence of Ag and<br>Energy                                                                                      | Biofuels: Switchgrass or<br>Corn Stover                                                                                                      | Biofuels<br>conversion WS                                                         |  |
| Week 8     | Live: MI Farmers Report<br>Midterm Exam                                                                                                |                                                                                                                                              |                                                                                   |  |
| Weeks 9-12 | Agroecology, IPM and<br>Cropping Systems<br>Weed, Insect, Disease<br>and Nematode decision<br>management                               | MPE pp. 21-94<br>MFCE pp. 40-59<br>IWM – both pubs, 6<br>chapters                                                                            | Pest WS<br>(optional)<br>available on line                                        |  |
| Week 13    | Multiple land use issues                                                                                                               | Minto Island and San<br>Diego County                                                                                                         | Land Use WS<br>Farm Reports<br>due                                                |  |
| Week 14    | Farm Reports: Group<br>discussion and analysis                                                                                         |                                                                                                                                              | Crop Rotation<br>Exercise due                                                     |  |
|            | Crop Rotation Exercise:<br>Discussion and synthesis                                                                                    |                                                                                                                                              |                                                                                   |  |
| Week 15    | Organic Agriculture:<br>Rotations, GMO, Nutrition<br>Sustainable Food<br>Systems<br>Final Exam                                         | Organic Only Assigned                                                                                                                        | Organic Only<br>due                                                               |  |



5. It is important that the student not just ask "what" but also ask "Why?" This will provide the student insight into why these cropping system decisions were made. The goal of the farm report is to understand the integrated farming system operation.

## **Converting a County to Organic Production Only**

Feed Needed for Livestock in the County Milk cow- 5,500 X 106 bushels corn = 583,000 bushels corn Milk cow- 5,500 X 5.7 tons forage dry matter = **31,350 tons dry forage** 

**Hogs**- 9,000 X 4.5 lbs feed X 365 days = 14,782,500 lbs feed/year X .75 corn = 11,086,875 lbs corn / 56 lbs/bushel = **197,979 bushels corn Organic Production** 



### 4. Manure produced and NPK requirements for Organic Corn and Wheat

| Tuscola Co. Manure NPK Ava                   | ilability Per | Year     |          |
|----------------------------------------------|---------------|----------|----------|
| Livestock                                    | N (lbs)       | P (Ibs)  | K (lbs)  |
| Beef (19000 head/year)                       | 4306635       | 4785150  | 22330700 |
| Dairy (500 head/year)                        | 590205        | 421575   | 1124200  |
| Swine (9000 head/year)                       | 873810        | 344925   | 942795   |
| Total 3 Year Available NPK (lbs):            | 17311950      | 16654950 | 73193085 |
| NPK Requirements F                           | Per Acre      |          |          |
| Crop                                         | N (lbs)       | P (Ibs)  | K (lbs)  |
| Corn                                         | 175           | 65       | 7(       |
| Wheat                                        | 75            | 45       | 3(       |
| Total Tuscola Co. NPK Re                     | quirements    |          |          |
| Crop                                         | N (lbs)       | P (Ibs)  | K (lbs)  |
| Corn (55000 acres/ 3 year rotation)          | 9625000       | 3575000  | 3850000  |
| Wheat (105000 acres/ 3 year rotation)        | 7875000       | 4725000  | 3150000  |
| Total 3 Year Rotation NPK Requirements (lbs) | 17500000      | 8300000  | 700000   |
|                                              |               |          |          |
|                                              | N             | Р        | К        |
| % of NPK Requirements Manure Fulfills:       | 98.93%        | 200.66%  | 1045.62% |

Major change in acreage allocation: reduce corn acreage to still yield with available manure N

### Student Comments from SIRS forms - anonymous

"The group projects helped me understand the dynamics behind actual farming operations and apply what I had learned in the past and in this class."

"At first I didn't like the crop rotation exercise but as it went on I realized I expanded my knowledge beyond corn and soybean and that is important to me."

"I don't have an ag background and the farm report probably helped me learn the most about farming". "The farm report might have been a pain but I felt it helped me understand what goes into a farming operation."